a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH=\dfrac{12\cdot9}{15}=7.2\left(cm\right)\)
b: ΔAHB vuông tại H có HI là đường cao
nên \(AI\cdot IB=HI^2\)
ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot KC=HK^2\)
Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
=>AIHK là hình chữ nhật
=>\(HI^2+HK^2=IK^2=AH^2\)
=>\(AI\cdot IB+AK\cdot KC=AH^2=7.2^2=51.84\)
c: Vì AIHK là hình chữ nhật
nên A,I,H,K cùng thuộc đường tròn đường kính AH