Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
=> \(HC=4HB\)
Đặt HC = x ta có: => HB = 4x
\(AH^2=HB.HC\)
hay \(14^2=4x.x\)
=> 196 = 4x2
=> x = 7
=> HB = 4x = 4.7 = 28
Ta có: BC = HB + HC = 7 + 28 = 35
Xét \(\Delta AHC\) vuông tại H ta có:
\(AH^2+HC^2=AC^2\)
=> AC = \(7\sqrt{5}\) cm
Xét \(\Delta AHB\) vuông tại H ta có:
\(AB^2=AH^2+BH^2=14^2+28^2=980\)
=> AB = \(14\sqrt{5}cm\)
Chu vi tam giác ABC:
AB +AC+BC= \(14\sqrt{5}+7\sqrt{5}+35=35+21\sqrt{5}\)