a: BC=5
\(AH=\dfrac{3\cdot4}{5}=2.4\)
\(BH=\dfrac{9}{5}=1.8\)
b: Vì BH vuông góc với HA tại H
nên CB là tiếp tuyến của (A;AH)
a: BC=5
\(AH=\dfrac{3\cdot4}{5}=2.4\)
\(BH=\dfrac{9}{5}=1.8\)
b: Vì BH vuông góc với HA tại H
nên CB là tiếp tuyến của (A;AH)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9 cm, AC = 12 cm.
a) Tính BC, AH
b) Vẽ đường tròn tâm A bán kính AH. Từ C vẽ tiếp tuyến CD với đường tròn tâm A (D là tiếp điểm). Đường thẳng DH cắt AC tại I. Chứng minh \(IA\cdot IC=\dfrac{DH^2}{4}\)
c) Đường thẳng DA cắt đường tròn tâm A tại điểm thứ hai là E. Chứng minh BE là tiếp tuyến đường tròn tâm A.
Cho tam giác ABC vuông tại A, đường cao AH, biết AB=3, AC=4.
a)Tính AH,BH?
b)Chứng minh BC là tiếp tuyến của đường tròn (A,AH).
c)Kẻ tiếp tuyến BI và CK với đường tròn (A,AH)(I.K là tiếp điểm). Chứng minh: BC=BI+CK và ba điểm I,A,K thẳng hàng.
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .
Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai D.
a) Chứng minh BD là tiếp tuyến của đường tròn (O).
b) Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (O) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (O) cắt AB, BD lần lượt tại P. Q. Chứng minh: \(2\sqrt{PE.QF}=EF\)
Bài 1. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 5cm; BH=2cm tính BC, HC, AH.
Bài 2: Cho A DEF vuông cân tại D vẽ đường tròn(E; ED)
a) chứng minh DF la tiếp tuyến đường tròn (E; ED)
b, kẻ tiếp tuyến FG của đường tròn (E; ED) tại G.
Tam giac DEFG là hinh gi ? vì sao ?
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm A bán kính AH.
a) Chứng minh BC là tiếp tuyến của đường tròn.
b) Từ B và C vẽ các tiếp tuyến BE, CF với đường tròn (E, F là các tiếp điểm khác H). Chứng minh rằng ba điểm E, A, F thẳng hàng.
c) Tính độ dài đoạn thẳng AH, biết CH = 4cm, HB = 9cm.
Cho Δ ABC vuông tại A, đường cao AH. Vẽ đường tròn (A;AH). Từ B,C kẻ các tiếp tuyến BD, CE với đường tròn (A), trong đó D,E là các tiếp điểm.
a) Chứng minh: A,D,E thẳng hàng
b) BD.CE = \(\dfrac{DE^2}{4}\)
c) Gọi M là trung điểm của CH. Đường tròn (M), đường kính CH cắt đường tròn (A) tại N (N≠H). Chứng minh: CN song song AM
Cho tam giác ABC có góc A=90độ, AH vuông góc với BC. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn đó. Tiếp tuyến tại D của đường tròn cắt CA tại E.
1)Cho AB=3cm,AC=4cm.Tính AH
2) Chứng minh tam giác BCE cân
3)Chứng minh BE là tiếp tuyến của (A;AH)
4)Kẻ KP vuông góc HD (P thuộc HD).CM: BD đi qua trung điểm của KP