\(cho\Delta abc\) vuông tại A đường cao AH vẽ HK\(\perp\)AB(K\(\in\)AB) câu a cm: AB.AK=HB.HC câu b cm: \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\) câu c vẽ HE\(\perp\)AC. CM: \(\dfrac{BH}{CE}=\dfrac{AB^3}{AC^3}\) câu d giả sử AB<AC. Lấy M\(\in\)HC; HM=HA. Qua M vẽ 1 đường thẳng \(\perp\) BC cắt AC tại F. CM: \(\dfrac{1}{AH^2}=\dfrac{1}{AF^2}+\dfrac{1}{AC^2}\)
cho tam giác ABC vuông tại A .Dường cao AH. Cho biết \(\dfrac{AC}{AB}\) =\( \sqrt{2}\) , HC - HB= 2
tính a, \(\dfrac{HC}{HB}\)
b, tinh AB,AC,BC
Cho tam giác ABC vuông tại A đường cao AH. Gọi M và N lần lượt là hình chiếu vuông góc của H trên AB và AC. CMR:
a) AM.AB = AN.AC
b) HB.HC = MA.MB + NA.NC
c) \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
cho tam giác ABC vuông tại A,đường cao AH.gọi D,E lần lượt là hình chiếu của H lên AB và AC.chứng minh: a) \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\) b) \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
Trong tam giác ABC vuông tại A có đường cao AH : AB = c, AC = b, BC = a, AH = h, BH = c', CH = b'
Chứng minh rằng :
a) \(h=\dfrac{bc}{a}\)
b) \(\dfrac{b^2}{c^2}=\dfrac{b'}{c'}\)
Cho tam giác ABC vuông tại A. Biết rằng \(\dfrac{AB}{AC}=\dfrac{5}{6}\), đường cao AH = 30 cm. Tính HB, HC ?
Bài 1: Cho hình bình hành ABCD có \(\widehat{A}\)=45, AB=BD=18
a) Tính độ dài AD
b) Tính diện tích hbh ABCD
Bài 2: Cho tam giác nhọn ABC, AB<AC, đường cao AH=h và đường trung tuyến AM, đặt \(\widehat{HAM}=\alpha\). CMR:
a) HC - HB =\(2h\tan\alpha\)
b) \(\tan\alpha=\dfrac{\cot C-\cot B}{2}\)
Bài 3: Cho tam giác nhọn ABC. CMR: \(\dfrac{BC}{\sin A}=\dfrac{CA}{\sin B}=\dfrac{AB}{\sin C}\)
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH. Đặt BC=a, CA= b, AB=c. CMR
a)\(AH=a\sin B\cos B\)
b)\(BH=a\cos^2B\)
c)\(CH=a\sin^2B\)
CÁC BẠN GIẢI CHI TIẾT GIÙM MÌNH NHÉ
MÌNH CẢM ƠN Ạ!
Cho tam giác ABC vuông tại A , đường cao AH . Biết \(\dfrac{AB}{AC}=\dfrac{3}{4}\) và BC = 20cm . Tính HB , HC
Cho \(\Delta ABC\) vuông tại A, \(AH\perp BC\), \(HM\perp AB,HN\perp AC,H\in BC,M\in AB,N\in AC.\) Chứng minh:
a) AM.AB = AN.AC
b) HB.HC = MA.MB + NA.NC
c) \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
d) \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)