a) Xét △ABC và △HBA có:
góc BAC = góc BHA = 90 độ
góc B chung
⇔ △ABC ∼ △HBA (g.g) (1)
⇔ AB/BC = HB/AB
⇒ AB2 = BC . BH (đpcm)
Xét △ABC và △HAC có:
góc BAC = góc AHC = 90 độ
góc C chung
⇔ △ABC ∼ △HAC (g.g) (2)
⇔ AB/BC = HA/AC
⇒ AB.AC=BC.AH (đpcm)
Từ (1),(2) ⇒ △ABH ∼ △CAH
⇒AH/BH=HC/AH
⇒ AH2= BH. HC (đpcm)