\(\cos C=\sin B=\frac{1}{3}\)
\(\cos^2C+\sin^2C=1\)
\(\sin^2C=\frac{8}{9}\Rightarrow\sin C=\frac{\sqrt{8}}{3}\)
\(\frac{1+\cos^2C}{\sin^2C}=\cot C\)
\(\cot C=\frac{5}{4}\)
\(\tan C=\frac{4}{5}\)
sin B=1/3=>AC=1cm;BC=3cm
AB=3^2-1^2=8=2√2
sin C=AB/BC=2√2/3
cosC=AC/BC=1/3
tanC=AB/AC=2√2/1=2√2
cot C=AC/AB=1/2√2