a: Xét ΔMAB và ΔMHC có
MA=MH
góc AMB=góc HMC
MB=MC
Do đó: ΔMAB=ΔMHC
b: ΔMAB=ΔMHC
nên góc MAB=góc MHC
=>AB//CH
=>CH vuông góc với AC
c: Xét ΔHCN vuông tại C và ΔBAN vuông tại A có
CH=AB
CN=AN
Do đó: ΔHCN=ΔBAN
=>NH=NB
a: Xét ΔMAB và ΔMHC có
MA=MH
góc AMB=góc HMC
MB=MC
Do đó: ΔMAB=ΔMHC
b: ΔMAB=ΔMHC
nên góc MAB=góc MHC
=>AB//CH
=>CH vuông góc với AC
c: Xét ΔHCN vuông tại C và ΔBAN vuông tại A có
CH=AB
CN=AN
Do đó: ΔHCN=ΔBAN
=>NH=NB
Cho tam giác ABC vuông tại A có am là đường trung tuyến trên tia đối của MA lấy điểm D sao cho MD = MA
a, chứng minh tam giác ACD vuông
b ,Gọi K là trung điểm của AC Chứng minh KB bằng KD
c , KD cắt BC tại I và KB cắt AD tại N . Chứng minh tg KNI cân
Cho tam giác ABC vuông tại A có AB = BC Gọi H là trung điểm của BC chứng minh tam giác ahb bằng tam giác ACh chứng minh góc bah= góc ach trên tia đối của tia ah lấy điểm e sao cho ae = bc trên tia đối của tia ca lấy điểm f sao cho cf = ab chứng minh be = bf và be vuông góc với bf
cho tam giác ABC có cạnh AB = BC, M là trung điểm của BC
a, chứng minh tam giác ABM = tam giác ACM
b, trên tia đối của tia MA lấy điểm D sao cho MD =MA chứng minh AC = BD
c, chứng minh AB // CD d, trên nửa mật phẳng là bờ AC khống chữa điểm B, vẽ tia Ax // BC lấy điểm I thuộc Ax sao cho AI = BC chứng minh 3 điểm D,C,I thẳng hàng
Cho tam giác ABC cân ở A ( AB > BC ) , gọi M là trung điểm của AC . Kẻ đường thẳng vuông góc với AC tại M cắt BC tại N
1. Chứng minh \(\widehat{NAC}=\widehat{ACB}\)
2. Trên tia đối của tia AN lấy điểm P sao cho BN = AP . Chứng minh AN = PC
3. Gọi H , K lần lượt là trung điểm của BC và NP . Chứng minh ba đường thẳng MN , AH , CK đồng quy
Giúp mk câu 3 thôi nha
Cho tam giác ABC . GỌi M,N lần lượt là trung điểm của cạnh AB và AC . Trên tia đối của tia MC lấy điểm P sao cho MP = MC . Trên tia đối của tia NB lấy điểm Q sao cho NQ = NB .
a) Chứng minh A là trung điểm của PQ
b) Chứng minh MN song song với BC và 4MN = PQ
c) Cho biết \(\widehat{CAB}=90^o\) . Chứng minh \(MP^2=BC^2-\dfrac{3}{4}AB^2\)
cho tam giác ABC nhọn có AB=AC. Gọi H là trung điểm BC
a)Chứng minh tam giác AHB = tam giác AHC
b) trên tia đối của tia HA lấy điểm M sao cho HM = HA Chứng minh tam giác AHB = tam giác MHC và MC song song AB Chứng minh tam giác ACM cân
c)Trên tia đối của tia CM, lấy điểm N sao cho C là trung điểm của MN. Gọi O là giao điểm của AC và HN, OM cắt AN tại K. Chứng minh: 20k=OM
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM