Cho ΔABC vuông tại A , có ∠ C = \(15^o\) , BC = 4cm
a ) Kẻ đường cao AH , đường trung tuyến AM . Tính ∠ AMH , AH , AM , HM , HC
b ) Chứng minh rằng : cos \(15^o\) = \(\frac{\sqrt{6}+\sqrt{2}}{4}\)
Cho ΔABCvuông tạ A có ^C=15o, BC=4cm
a) Kẻ đường cao AH,đường trung tuyến AM. TÍnh ^AMH, AH,AM,HM,HC
b) CMR: \(\cos15^o=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm a) Tính BC,AH, góc B,góc C b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
Cho tam giác ABC vuông tại A có AB= 16cm ;AC =12cm, đường cao AH. Trên tia đối của tia CB lấy điểm E. Vẽ HN vuông góc với AE tại N. a) Tính BC; AH;HB và số đo góc B b) Chứng minh AN.AE = HB .HC c) Vẽ HM vuông góc với AB tại M. Chứng minh :AE = 3 AM biết rằng BE =3 MN
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm
a) Tính BC,AH, góc B,góc C
b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC
c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
Cho tam giác ABC vuông tại A có AB=9cm AC=12cm BC=15cm. Kẻ đường cao AH và trung tuyến AO. Tia phân giác trong và ngoài của góc BAC lần lượt cắt BC tại D, E. Chứng minh \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)
Cho tam giác ABC vuông tại A có góc B = 30 độ, AB = 6cm
a) Giải tam giác vuông ABC
b) Kẻ đường cao AH và trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM
Cho ΔABC vuông tại A, kẻ đường cao AH. Biết BC = 5cm, = 30O
a) Giải tam giác vuông ABC, Tính AH, HB, HC.
b) Qua C kẻ đường thẳng vuông góc AC, cắt AH tại M. Chứng minh AH. AM = CH. CB
Cho tam giác ABC vuông tại A, đường phân giác AD. Chứng minh rằng √2/AD = 1/AB + 1/AC. Kẻ đường cao AH và đường trung tuyến AM của tam giác ABC chứng minh rằng nếu 1/ah^2+1/am^2=2/ad^2. Giúp mình câu 2 thôi ạ mình cảm ơn