Bài 7: Định lí Pitago

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Việt

cho tam giác abc vuông tại a có bc=102cm. ab trên ac = 8 trên 15 . tính các cạnh của tam giác vuông

Nguyễn Lê Phước Thịnh
30 tháng 1 2021 lúc 13:05

Ta có: \(\dfrac{AB}{AC}=\dfrac{8}{15}\)(gt)

nên \(AB=\dfrac{8}{15}\cdot AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\left(\dfrac{8}{15}\cdot AC\right)^2+AC^2=102^2\)

\(\Leftrightarrow\dfrac{64}{225}AC^2+AC^2=102^2\)

\(\Leftrightarrow\dfrac{289}{225}AC^2=102^2\)

\(\Leftrightarrow AC^2=102^2:\dfrac{289}{225}=8100\)

hay AC=90(cm)

Ta có: \(AB=AC\cdot\dfrac{8}{15}\)(cmt)

nên \(AB=90\cdot\dfrac{8}{15}=48\left(cm\right)\)

Vậy: AC=90cm; AB=48cm