Cho tam giác ABC vuông tại A có AB = 3cm; BC = 5cm.
a) Tính độ dài cạnh AC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ACBA = ACDA.
c) Trên cạnh AC lấy điểm E sao cho CE = lem. CMR: EA là tia phân giác của góc BED.
d) ACBD và AEBD là tam giác gì? Vì sao?
e) Tam giác ABC cần có thêm điều kiện gì để tam giác CBD trở thành tam giác đều?
a: \(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\)
b:Xét ΔACB vuông tại A và ΔACD vuông tại A có
AC chung
AB=AD
Do đó: ΔACB=ΔACD
c: Xét ΔEDB có
EA là đường trung tuyến
EA là đường cao
Do đó:ΔEDB cân tại E
mà EA là đường cao
nên EA là tia phân giác của góc BED
d: Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó:ΔCBD can tại C