a) Dễ thấy: BAH + CAK = 90o (1)
t/g BHA vuông tại H có: HBA + BAH = 90o (2)
Từ (1) và (2) => CAK = HBA
Xét t/g AKC vuông tại K và t/g BHA vuông tại H có:
AC = AB (gt)
CAK = ABH (cmt)
Do đó, t/g AKC = t/g BHA ( cạnh huyền - góc nhọn)
=> CK = AH (2 cạnh tương ứng) (đpcm)
b) t/g AKC = t/g BHA (cmt)
=> AK = BH (2 cạnh tương ứng)
Lại có: CK = AH (câu a)
=> AK + AH = BH + CK
=> HK = BH + CK (đpcm)