a: BC=15cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
a: BC=15cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
Cho tam giác ABC vuông tại A, có AB= 9cm, BC= 15cm. a) Tính độ dài cạnh AC và so sánh các góc của tam giác ABC. b) Trên tia đối cua tia AB lấy điểm D sao cho AB=AD. CMR : BC=DC c) Gọi E,F lần lượt là trung điểm cạnh CD,BC; gọi I là giao điểm của BE và AC. Chứng minh D,I,F thẳng hàng.
bài 10 Cho tam giác ABC cân tại A . Trên cạnh BC lấy các điểm BC lấy điểm D và E sao cho : BD=DE=EC. Gọi M là trung điểm của DE . 1) chứng minh AM vuông góc BC . 2) So sánh các độ dài AB,AD,AE,AC
bài 1: cho tam giác ABC vuông tại A có Ab=9cm BC=15cm
a) tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b) Trên tia đối của tia AB lấy điểm d sao cho A là trung điểm của đoạn thẳng BD. chứng minh tam giác BCD cân
c) E là trung điểm cạnh CD,BE cắt AC ở I (i). chứng minh DI(i) đi qua trung điểm cạnh BC
cho mình xin hình tam giác luôn ạ
Cho tam giác ABC vuông tại A có phân giác BD ( D thuộc AC). Trên cạnh BC lấy điểm E sao cho AE = BE. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Gọi I là giao điểm của BD và FC. Chứng minh rằng:
a) Tam giác ABD = Tam giác EBD
b) DE vuông góc với BC
c) BD là trung trực của đoạn thẳng AE
d) Ba điểm D , E , F thẳng hàng
e) Điểm D cách đều ba cạnh của tam giác AEI
Bài 4.Cho tam giác ABC vuông tại A, kẻ đường phân giác BI (I thuộc AC) , kẻ ID vuông góc với BC (D thuộc BC). a) Chứng minh tam giác AIB = tam giác DIB
b) Chứng minh BI vuông góc AD
c) Gọi E là giao điểm của BA và DI. Chứng minh AD// EC
d) Chứng minh EIC cân
cho tam giác abc có 3 góc nhọn ,kẻ AH vuông góc với BC . vẽ điểm D và E sao cho AB là đường trung trực của DH và AC là đường trung trực của HE. DE lần lượt cắt AB và AC tại I và K,kẻ DB cắt EC tại G
a)chứng minhHA là tia phân giác góc IHK
b)chứng minh GA là đường trung trục của DE
c)chứng minh góc BAC bằng góc IHB
cho tam giác abc (góc a=90 độ) tia phân giác cua góc abc cắt ac tại i trên cạch bc lấy điểm d sao cho ab=bd gọi giao điiểm của 2 tia di và ab là e cmr
a)di vuông góc với bc
b)tam giác bce là tam giác cân
c)tính góc abc bt ec=2ad
d) cho ab=8cm bc=10cm tính ac
Cho tam giác ABC vuông tại A . Tia phân giác góc B cắt AC tại D , tia phân giác góc C cắt AB tại E kẻ DH vuông góc với BC tại H, kẻ EK vuông góc với BC tại K a) Chứng minh BA=BH b) BD vuông góc với AH c) Chứng minh AB+AC=BC+HK d) Tính góc HAK
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc B cắt AC tại D trên cạnh BC lấy điểm E sao cho BE =BA vẽ AH vuông góc với BC tại H
a chứng minh tam giác ABD = tam giác EBD và AD = ED
b chứng minh AH song song với DE