a) Xét ΔABM và ΔDCM có
\(\widehat{A}=\widehat{D}=90^o\)
\(\widehat{M1}=\widehat{M2}\) (đối đỉnh)
=> ΔABM ~ ΔDCM (g-g) (đpcm)
a) Xét ΔABM và ΔDCM có
\(\widehat{A}=\widehat{D}=90^o\)
\(\widehat{M1}=\widehat{M2}\) (đối đỉnh)
=> ΔABM ~ ΔDCM (g-g) (đpcm)
Cho ∆ABC vuông tại A,AB=6cm,BC=10cm,đường trung tuyến AM,qua C kẻ đường thẳng vuông góc với B qua D,CM: a)∆ABM đồng dạng với ∆DCM b)tính CD=? c)qua A kẻ đường thẳng //BC cắt BM tại N
cho tam giác abc vuông tại a có ab = 6cm bc =10cm. đg thẳng d vuông góc với bc tại b. gọi D là chân đường vuông góc kẻ từ A đến đường thẳng d . tính AC. c/m tam giác ADB đồng dạng vs tam giác BAC, tính AD!! Mình đang cần gấp. Mong các bn giúp !! :)))))
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác vuông ABC (A=90o). Một đường thảng song song với cạnh BC căt hai cạnh AB và AC theo thứ tự tại M và N, đường thẳng đi qua N và song song với AB cắt BC tại D. Cho biết AM=6cm;An=8cm;BM=4cm.
a)Tính độ dài các đoạn thẳng Mn,NC và BC
b)Tính diện tích hình bình hành BMND
Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
cho tam giác ABC vuông tại A có AB= 6cm và BC= 10cm.kẻ đường phan giác CD của tam giác ABC (D ϵ AB)
a) tính độ dài cạnh AC. Tính độ dài đoạn thẳng BD và AD.
b) kẻ đường cao AH (H ϵ BC). Chứng minh AB2=HB.BC. Từ đó suy ra độ dài AH.
c) AH cắt CD tại E. Chứng minh AD.EH=ED.BD
Cho tam giác ABC vuông taỊ a, Biết AB=6cm,BC=10cm.Đường phân giác của góc B cắt AC tại D
a)Tính độ dài các đoạn thẳng AC,AD và DC
b)Kẻ DH vuông góc với BC(H thuộc BC). Chứng minh tam giác DHC đồng dạng vs tam giác ABC
c)Tính tỉ số diện tích của 2 tam giác DHC và ABC
Bài 3 :Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt 2 cạnh AB và AC theo thứ tự tại M và N; đường thẳng qua N và song song với AB, cắt BC tại D. Cho biết AM = 6, AN = 8, BM = 4.
a) Tính độ dài MN, NC và BC
b) Tính diện tích hình bình hành BMND
1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)