a) Tính AC = 12cm
Xét \(\Delta ABC\) có BD là phân giác
\(\Rightarrow\) \(\frac{AB}{BC}=\frac{AD}{CD}\Leftrightarrow\frac{AB}{AB+BC}=\frac{AD}{AD+CD}\Leftrightarrow\frac{16}{16+20}=\frac{AD}{12}\Leftrightarrow AD=\frac{16}{3}cm\)
Có \(CD=AC-AD=12-\frac{16}{3}=\frac{20}{3}\) cm
b) Xét \(\Delta ABD\) và \(\Delta HCD\) có :
\(\widehat{BAD}=\widehat{CHD};\widehat{ADB}=\widehat{HDC}\)
\(\Rightarrow\) \(\Delta ABD\) ~ \(\Delta HCD\)
c) Xét \(\Delta ABD\) vuông tại A :
\(BD^2=AB^2+AD^2\Rightarrow BD^2=\frac{2560}{9}\)
\(\frac{SABD}{SHCD}=\frac{BD^2}{CD^2}=\frac{\frac{2560}{9}}{\frac{400}{9}}=\frac{32}{5}\) \(\left(1\right)\)
SABD = \(\frac{1}{2}AB.AD=\frac{1}{2}.16.\frac{16}{3}=\frac{128}{3}\) \(\left(2\right)\)
Từ (1) và (2) Suy ra S HCD = \(\frac{20}{3}cm^2\)
bạn tự vẽ hình nhé
vì BD là tia phân giác của góc B nên ta có:
\(\frac{AD}{AB}\)=\(\frac{CD}{AC}\)
<=>\(\frac{AD}{16}\)=\(\frac{CD}{20}\)
<=>20AD=16CD
<=>AD =\(\frac{4}{5}\)CD
áp dụng định lý py-ta-go vào tam giác vuông ABC ta được:
\(AC^2\)=\(BC^2\)-\(AB^2\)
<=>\(AC^2\)=\(20^2\)-\(16^2\)
<=>\(AC^2\)=144
<=>AC=12 (cm)
mà AD+ CD = AC
<=>\(\frac{4}{5}CD\)+CD =12
<=>\(\frac{9}{5}\)CD =12
<=> CD =\(\frac{20}{3}\) (cm)
<=> AD=\(\frac{4}{5}CD\)
<=> AD =\(\frac{16}{3}\) (cm)