a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+6^2=100\)
hay \(BC=\sqrt{100}=10cm\)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\frac{DC}{AC}=\frac{DB}{AB}\)(tính chất đường phân giác của tam giác)
hay \(\frac{DC}{6}=\frac{DB}{8}\)
Ta có: DC+DB=BC(D nằm giữa B và C)
hay DC+DB=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{DC}{6}=\frac{DB}{8}=\frac{DB+DC}{8+6}=\frac{10}{14}=\frac{5}{7}\)
Do đó: \(\left\{{}\begin{matrix}\frac{DC}{6}=\frac{5}{7}\\\frac{DB}{8}=\frac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DC=\frac{5\cdot6}{7}=\frac{30}{7}cm\\DB=\frac{5\cdot8}{7}=\frac{40}{7}cm\end{matrix}\right.\)
Vậy: \(DC=\frac{30}{7}cm\); \(DB=\frac{40}{7}cm\)
b) Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{8\cdot6}{2}=24cm^2\)(1)
Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)
nên \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{AH\cdot10}{2}=5\cdot AH\)(2)
Từ (1) và (2) suy ra \(5\cdot AH=24\)
hay AH=4,8cm
\(\Rightarrow AH^2=23,04cm^2\)(3)
Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=8^2-4,8^2=40,96\)
hay \(BH=\sqrt{40,96}=6,4cm\)
Xét ΔHEA và ΔBHA có
\(\widehat{HEA}=\widehat{BHA}\left(=90^0\right)\)
\(\widehat{B}\) chung
Do đó: ΔHEA∼ΔBHA(g-g)
⇒\(\frac{AE}{AH}=\frac{AH}{AB}\)
hay \(\frac{AE}{4.8}=\frac{4.8}{8}\)
⇔\(AE=\frac{4.8\cdot4.8}{8}=2,88cm\)
⇔\(AE\cdot AB=2,88\cdot8=23,04cm\)(4)
Từ (3) và (4) suy ra \(AE\cdot AB=AH^2\left(=23,04\right)\)
c) Ta có: BH+HC=BC(H nằm giữa B và C)
hay HC=BC-BH=10-6,4=3,6cm
Ta có: ΔAHC vuông tại H(gt)
nên \(S_{AHC}=\frac{AH\cdot HC}{2}=\frac{4,8\cdot3,6}{2}=8,64cm^2\)(6)
Xét ΔAHC có HF là đường cao ứng với cạnh AC(gt)\
nên \(S_{AHC}=\frac{HF\cdot AC}{2}=\frac{HF\cdot6}{2}=3\cdot HF\)(7)
Từ (6) và (7) suy ra \(3\cdot HF=8,64\)
hay HF=2,88cm
Áp dụng định lí pytago vào ΔAHF vuông tại F, ta được:
\(AH^2=AF^2+HF^2\)
\(\Leftrightarrow AF^2=AH^2-HF^2=4,8^2-2,88^2=14,7456\)
hay \(AF=\sqrt{14,7456}=3,84cm\)
⇒\(AC\cdot AF=3,84\cdot6=23,04cm\)(5)
Từ (4) và (5) suy ra \(AE\cdot AB=AF\cdot AC\)(đpcm)
d) Ta có: BE+AE=BA(E nằm giữa A và B)
hay BE=AB-AE=8-2,88=5,12cm
Vậy: BE=5,12cm