C1:
Áp dụng ht lượng trong tam giác vuông có:
\(sinB=\frac{AC}{BC}\) <=>\(\frac{\sqrt{3}}{2}=\frac{AC}{BC}\) <=>\(AC=\frac{BC\sqrt{3}}{2}\)
Áp dụng đ/lý py-ta-go vào tam giác vuông ABC có:
\(AB^2+AC^2=BC^2\)
<=>\(1+\left(\frac{\sqrt{3}BC}{2}\right)^2=BC^2\)
<=>\(1+\frac{3BC^2}{4}-BC^2=0\)
<=>\(1=\frac{BC^2}{4}\) <=> \(BC^2=4\) =>BC=2(cm)
=>AC=\(\sqrt{3}\)(cm)
C2:
Có : \(sin^2B+cosB^2=1\)
<=>\(cosB^2=1-sin^2B=1-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{1}{4}\)
=> \(cosB=\frac{1}{2}\)
Áp dụng ht lượng trong tam giác vuông ABC có:
\(cosB=\frac{AB}{BC}\) => \(BC=\frac{AB}{cosB}=\frac{1}{\frac{1}{2}}=2\)( cm)
Áp dụng đ/lý py-ta- go vào tam giác vuông ABC có:
\(AC^2=BC^2-AB^2=2^2-1=3\)
=> \(AC=\sqrt{3}\left(cm\right)\)