Tam giác ABC vuông Tại A ,AC>AB .kẻ AH vuông góc vs BC trên HC lấy D sao choHD=HB .KẺ CEvuông góc vs AD. c/m
a . tg ABD CÂN
b. gọi K là giao điểm của AH và CE .c/m KD//AB
c. tìm điều kiện của tg ABC để tg AKD đều
1) Tam giác ABC vuông tại A. Vẽ ở phía ngoài các tam giác ABD, ACE vuông cân tại A. Có AH là đường cao tam giác ABC, AH cắt DE tại K. CMR: K là trung điểm DE.
2) Cho tam giác cân ABC, M bất kì thuộc BC. Kẻ ME, MF vuông góc với AC, AB. Kẻ BH vuông góc AC. Chứng minh ME + MF = BH
cho \(\Delta ABC\perp A\left(AC< AB\right)\). Kẻ\(AH\perp BC\). Trên BC lấy điểm D sao cho HD=HB. Kẻ \(CE\perp AD\). CM:
a, \(\Delta BAD\) cân
b, CD là phân giác góc ACE
c, Gọi giao điểm của AH, CE là K.CM: KD//AB
d, Tìm điều kiện của \(\Delta ABC\) để \(\Delta AKC\) đều
B1:cho tam giác ABC, A= 90 đọ. AB= AC, qua A kẻ đường thẳng xy. Vẽ BD vuông góc xy. Tại D, CE vuông góc với xy tại E.CMR:
a) tam giác ABD= tam giác ACE
b) DE= BD+ CE
B2:Cho tam giác ABC có góc A= 90 độ. Trên nửa mặt phẳng bờ AB có chứa điểm C. Vẽ AD vuông góc với AB và AD= AB. Trên nửa mặt phẳng bờ AC có chứa điểm B. Vẽ AE vuông góc với AC. Kẻ AH vuông góc với ED tại H. CMR: đường thẳng AH đi qua chung điểm cạnh BC.
Cho tam giác ABC vuông tại A (AB < AC). D thuộc tia đối của tia AC, AD=AB. E thuộc tia đối của tia AB, AE=AC
a) Chưng minh BC = DE
b) Chứng minh: Tam giác ABD vuông cân và BD song song với CE
c) Kẻ đường cao AH của tam giác ABC. AH cắt DE tại M. Kẻ AK vuông góc với MC. AK cắt BD tại N. Chứng minh NM song song với AB
d) CM AM=1/2 DE
Cho tam giác ABC vuông tại A. Vẽ đường cao AH. Trên cạnh BC lấy D sao cho BD = BA. CMR:
a) Góc BAD = góc ADB
b) AD là phân giác của góc HAC
c) Vẽ DK vuông góc AC (K thuộc AC). CMR: AK = AH
d) AB + AC < BC + 2AH
Cho tam giác ABC, trung tuyến AM. Trên tia AM lấy điểm N sao cho MN=AM.
a) CMR: CN//AB
b) CMR: Tam giác ABC=NCB
c) Dựng ra phía ngoài tam giác ABC các tam giác: tam giác ABD và ACE vuông cân tại A. CMR: BE=CD và BE vuông góc với CD
d) CMR: AN=DE và AN vuông góc với DE
e) Kẻ AH vuông góc với BC. CMR: AH đi qua trung điểm của DE
b1: cho tam giác DÈ cân tại D với đường trung tuyến DI
biết góc DIE và DIf là góc vuông, DI=12 cm,EF=10 cm
tính BE bn cm.........
b2 cho tam giác ABC vuông A có C =30o AH vuông BC đoạn HC lấy D sao cho HD=HB từ C kẻ CE vuông AD biết tam giác ABC đều
c/m AH=CE;b) EH // AC
giúp tôi sẽ hậu tạ
Cho tam giác vuông ở A có góc C = 300, đường cao AH. Trên đoạn HC lấy điểm D sao cho HD=HB. Từ C kẻ CE vuông góc với AD. Chứng minh:
a) tam giác ABD là tam giác đều
b) AH = CE
c) EH sông song với AC