Cho tam giác ABC vuông tại A (AB<AC), đường trung tuyến Am. Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F. Kẻ AH vuông góc với BC (H thuộc BC), AH cắt FE tại I. Chứng minh rằng :
a.Góc BAM = góc ABM.
b. Góc ACB = góc AEF từ đó suy ra tam giác MBE đồng dạng với tam giác MFC.
c.AB.AE = AC.AF
d.S ABC/ S AFE =(AM/AI)^2
GIúp mình với nay mình thi rồi
a: ΔABC vuông tại A
mà AM là trung tuyến
nên AM=MB=MC
=>góc MBA=góc MAB
b: góc AEF=90 độ-góc EAM=90 độ-góc B
=>gócAEF=góc ACB
c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có
góc AEF=góc ACB
=>ΔAFE đồng dạng với ΔABC
=>AF/AB=AE/AC
=>AF*AC=AB*AE