Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. kẻ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH
c) gọi AD là phân giac góc BAC ( D thuộc BC)
tính diện tích tam giac AHD (làm tròn đến chữ số thâp phân thứ nhất)
Cho tam giác ABC vuông tại A có AB = 12cm, AC =16cm. kẻ đường cao AH.
a) Cm tam giác HBA đồng dạng tam giác ABC.
b) Tính BC,AH,BH
c) gọi AD là phân giac góc BAC ( D thuộc BC)
tính diện tích tam giac AHD (làm tròn đến chữ số thâp phân thứ nhất)
cho tam giác ABC (A=90 độ),AB=6cm, AC=8cm vẽ đường cao AH đường phân giác BD của góc B cắt AH tại I. (D thuộc AC)
a.cm tam giác HAC đồng dạng với tam giác ABC
b.tính BC và HC
c.cm AB.BI=BD.HB
d.tính tỉ số diện tích của 2 tam giác HAC và HBA
Cho Tam giác ABC vuông tại A kẻ phân giác BD cắt đường cao AH tại E
a) C/m ABC đồng dạng HBA
b) C/m BE.AD = BD.HE
c) Tính diện tích tam giác AEB biết AB = 15 cm, AC = 20 cm
Cho tam giác ABC vuồn tại A, AB = 6cm, AC = 8cm, đường cao AH, phân giác BD cắt nhau tại I.
a, Chứng minh \(\Delta\)ABH đồng dạng \(\Delta\)CBA
b, Tính AD, DC
c, AB.BI = BD.HB
d, Tính diện tích tam giác BHI
cho tam giác ABC vuông ở A, AB=6, AC=8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC.
b) Chứng minh IH*DC=IA*AD
c) Chúng minh AB*BI=BD*HB và tam giác AID cân
cho tam giác abc vuông tại a. ab=15cm, ac=20cm. vẽ tia ax//bc và tia by vuông góc với bc tại b, tia ax cắt by tại d
a, cm tam giác abc đồng dạng tam giác dab
b, tính bc, da, db
c, ab cắt cd tại i. tính diện tích tam giác bic
cho tam giác vuông tại a, đường cao ah, đường phân giác ad. kẻ dk vuông góc với ac( k thuộc ac)
1,cm tam giác abc đồng dạng tam giác hac
2, giả sử ab=6cm, ac = 8cm. tính độ dài đoạn bd
3, cm ac.ad=phương trình bật 2 ab.ck
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC