a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
b: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là phân giác của góc HAC
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
b: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là phân giác của góc HAC
Chotam giác nhọn ABC (A<B), đường cao AH.
Chứng minh:
a) Góc BAH< góc HAC
b) Trên HC lấy điểm D sao cho HD=HB. Chứng minh tam giác ABD cân
Từ C kẻ BE vuông góc với AC, từ C kẻ CF vuông góc với AD. Chứng Minh 3 đường thẳng AH,BE,CF cùng đi qua một điểm
Cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=BA. Đường vuông góc với BC tại D cắt AC ở E
a) Chứng minh : AE=DE
b)C/m : AD là tia phân giác của góc HAC
c) So sánh : HD và DC
d) Đường phân giác góc ngoài tại đỉnh C đường thẳng BE ở K . Tính góc BAK ?
Cho tam giác ABC vuông tại A. Vẽ đường cao AH. Trên cạnh BC lấy D sao cho BD = BA. CMR:
a) Góc BAD = góc ADB
b) AD là phân giác của góc HAC
c) Vẽ DK vuông góc AC (K thuộc AC). CMR: AK = AH
d) AB + AC < BC + 2AH
Cho tam giác ABC vuông tại A. Kẻ AH vuông BC tại H. Kẻ tia phân giác AD của góc BAH (D∈BC)
a) Chứng minh: ^BAH=^C, ^CAH=^B
b) Chứng minh: ΔACDcân
c) Kẻ DK vuông BC, cắt AB tại K. Chứng minh ΔKAD cân
d) CK là tia phân giác của ^C và CK là đường trung trực AB
e) Trên cạnh AB lấy điểm I sao cho AI = AH. Chứng minh DI // AC
Cho tam giác ABC vuông ở A, đường cao AH. Trên cạnh BC lấy điểm D sao cho: BD=BA
a) CMR: góc BAD= góc ADB
b) CMR: AD là phân giác góc HAC
c) Vẽ DK vuông góc AC(K thuộc AC). CMR: AK=AH
b) CMR: AB+AC< BC+2AH
Cho tam giác ABC vuông tại A (AB < AC). D thuộc tia đối của tia AC, AD=AB. E thuộc tia đối của tia AB, AE=AC
a) Chưng minh BC = DE
b) Chứng minh: Tam giác ABD vuông cân và BD song song với CE
c) Kẻ đường cao AH của tam giác ABC. AH cắt DE tại M. Kẻ AK vuông góc với MC. AK cắt BD tại N. Chứng minh NM song song với AB
d) CM AM=1/2 DE
Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H
a) Tính số đo góc HAB
b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H
a) Tính số đo góc HAB
b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng
Cho tam giác ABC vuông tại A, đường cao AH. AD là phân giác của góc BAH (H và D thuộc BC). Trên tia AH lấy E sao cho AE = AB.
a) Chứng minh BD = DE
b) Trên tia AB lấy F sao cho AF = AH. Chứng minh DE // AC
c) Chứng minh F,D,E thẳng hàng