BH\(\perp\)AE
CK\(\perp\)AE
Do đó: BH//CK
Xét ΔDHB vuông tại H và ΔDKC vuông tại K có
DB=DC
\(\widehat{HDB}=\widehat{KDC}\)
Do đó: ΔDHB=ΔDKC
=>HB=KC
BH\(\perp\)AE
CK\(\perp\)AE
Do đó: BH//CK
Xét ΔDHB vuông tại H và ΔDKC vuông tại K có
DB=DC
\(\widehat{HDB}=\widehat{KDC}\)
Do đó: ΔDHB=ΔDKC
=>HB=KC
Cho △ABC vuông tại A, AB = 6cm, AC = 8cm.
a) Tính BC
b) Đường thẳng đi qua trung điểm I của BC và vuông góc với BC cắt AC tại D. Chứng minh \(\widehat{CBD}\) = \(\widehat{DCB}\)
c) Trên tia đối của tia DB lấy điểm E sao cho DE = DC. Chứng minh △BCE vuông
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm D sao cho HA = HD. Trên tia đối của tia CB lấy điểm E sao cho CE = CB.
a) Chứng minh C là trọng tâm của tam giác ADE
b) Tia AC cắt DE tại M. Chứng minh rằng AE // MH.
Cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB và AC. Trên tia đối của tia NB lấy điểm D sao cho ND=NB. Trên tia đối của tia MC lấy điểm E sao cho ME=MC. Chứng minh
A) AD= BC
b) góc nhọn AE// BC
c) A là trung điểm của DE
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AB=AD. Trên cạnh AC lấy điểm E sao cho AE=1/2 AC
a) Chứng minh: E là trọng tâm của tam giác BCD
b) Gọi M là trung điểm của DC. Chứng minh: 3 điểm B;M;E thẳng hàng
Cho tam giác ABC nhọn (AB<AC) vẽ AH vuông góc BC ( H thuộc BC),HI vuông góc AB,HK vuông góc AC(I thuộc AB, K thuộc AC).Trên tia đối của tia IH, KH lấy các điểm E và F sao cho IE=IH , KF=KH
a) chưng minh AE=AF
b)Gỉa sử góc BAC=60 độ. Tính số đo các góc của tam giác AEF
C)Gọi M là trung điểm của BC, vẽ BP vuông góc AM ( CP thuộc AM) và CQ vuông góc với đường thẳng AM ( K thuộc AM) chứng minh BP=CQ
Cho tam giác ABC nhọn (AB<AC) vẽ AH vuông góc BC ( H thuộc BC),HI vuông góc AB,HK vuông góc AC(I thuộc AB, K thuộc AC).Trên tia đối của tia IH, KH lấy các điểm E và F sao cho IE=IH , KF=KH
a) chưng minh AE=AF
b)Gỉa sử góc BAC=60 độ. Tính số đo các góc của tam giác AEF
C)Gọi M là trung điểm của BC, vẽ BP vuông góc AM ( CP thuộc AM) và CQ vuông góc với đường thẳng AM ( K thuộc AM) chứng minh BP=CQ
Cho tam giác ABC nhọn (AB<AC) vẽ AH vuông góc BC ( H thuộc BC),HI vuông góc AB,HK vuông góc AC(I thuộc AB, K thuộc AC).Trên tia đối của tia IH, KH lấy các điểm E và F sao cho IE=IH , KF=KH
a) chưng minh AE=AF
b)Gỉa sử góc BAC=60 độ. Tính số đo các góc của tam giác AEF
C)Gọi M là trung điểm của BC, vẽ BP vuông góc AM ( CP thuộc AM) và CQ vuông góc với đường thẳng AM ( K thuộc AM) chứng minh BP=CQ
Cho tam giác ABC vuông tại A. Biết AC = 8cm BC=10cm
a) Tính AB, so sánh các góc của tam giác ABC
b) Trên tia đối tia AB lấy điểm D sao cho AD=AB. Đường thẳng qua A song song BC cắt DC tại N. Chứng minh tam giác ACB = tam giác ACD và tam giác ANC cân
c) Trên đoạn AC lấy điểm G sao cho GA = 1/2 GC. Chứng minh B;G;n thẳng hàng
Cho ABC vuông ở C có 0 A 60 . Tia phân giác của BAC cắt BC tại E. Kẻ EK AB(K AB) , Kẻ BD AE(D AE) . Chứng minh: a. AE là trung trực của đoạn thẳng CK b. KA = KB c. EB > AC d. 3 đường thẳng AC, BD, KE đồng quy