Lời giải:
Chuyển $S_{ABC}=x$. Tính $BD.CE$ theo $x$
Đặt $AB=c; BC=a; CA=b$.
Theo tính chất tia phân giác:
$\frac{AD}{DC}=\frac{c}{a}\Rightarrow \frac{AD}{b}=\frac{c}{c+a}$
$\Rightarrow AD=\frac{bc}{c+a}$
Tương tự:
$AE=\frac{bc}{a+b}$
Áp dụng định lý Pitago:
$BD^2=c^2+(\frac{bc}{a+c})^2=c^2[1+\frac{b^2}{(a+c)^2}]$
$=c^2.\frac{(a+c)^2+b^2}{(a+c)^2}=c^2.\frac{a^2+b^2+c^2+2ac}{(a+c)^2}$
$=c^2.\frac{2a^2+2ac}{(a+c)^2}=\frac{2ac^2}{a+c}$
Tương tự:
$CE^2=\frac{2ab^2}{a+b}$
Do đó:
$BD^2.CE^2=\frac{4a^2b^2c^2}{(a+c)(a+b)}$
$BD.CE=\frac{2abc}{\sqrt{(a+b)(a+c)}}=\frac{4xa}{\sqrt{(a+b)(a+c)}}$
Như bạn thấy thì $BD.CE$ không tính được riêng theo $S_{ABC}$ mà vẫn bị ảnh hưởng bởi $AB,AC$