b: Xét ΔDCA và ΔDCM có
DC chung
\(\widehat{DCA}=\widehat{DCM}\)
CA=CM
Do đó: ΔDCA=ΔDCM
Suy ra: DA=DM
b: Xét ΔDCA và ΔDCM có
DC chung
\(\widehat{DCA}=\widehat{DCM}\)
CA=CM
Do đó: ΔDCA=ΔDCM
Suy ra: DA=DM
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
Cho tam giác ABC có góc B >góc C .Kẻ AH vuông góc BC sao cho H thuộc HC . Gọi Đ là điểm nằm giữa A và H .CM: a)BH
cho tam giác ABC vuông tại A vẽ tia phân giác BD của góc ABC kẻ DE vuông góc BC AB cắt DE ở F BD cắt CF tại H trên tia đối của tia DF lấy điểm K sao cho DK=DF lấy I trên CD sao cho CI=2DI cm
a BF=BC
b K,I,H thẳng Hàng
Cho tam giác ABC cân tại A.Trên AB lấy D.Trên tia đối của CA lấy E sao cho BD =CE Vẽ DH vuông góc với BC(H€BC) CK vuông góc với BC(K€BC) C/m:a) BH=CK b)BC
Cho tam giác ABC cân tại A.Trên AB lấy D.Trên tia đối của CA lấy E sao cho BD =CE Vẽ DH vuông góc với BC(H€BC) CK vuông góc với BC(K€BC) C/m:a) BH=CK b)BC<DE
Cho tam giác ABC vuông tại A,đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC).Trên tia đối của tia AB lấy điểm F sao cho AF=CE.Chứng minh:
a) Tam giác ABD=tam giác EBD
b) AB = BE
c) E,D,F thẳng hàng
d) BD là đường trung trực của đoạn thẳng fc
Cho ▲ABC vuông ở C có góc A bằng 60 độ .Tia phân giác của góc BAC cắt BC ở E .Kẻ EK vuông góc với AB (k thuộc AB).Kẻ BD vuông góc với tia AE (D thuộc tia AE). Chứng minh :
a, AK=KB
b, AD=BC
Cho tam giác ABC vuông tại B. Trên cạnh BC lấy các điểm D và E (D nằm giữa B và E).
a)So sánh độ dài các đoạn thẳng AB, AD, AE, AC.
b)Vẽ BI, BK, BH lần lượt vuông góc với AD, AE, AC. So sánh các góc ABH, ABK, ABI.