cho tam giác abc vuông góc ac (M thuộc AB) vẽ EMH vuông góc với BC (thuộc BC)
a) vẽ hình
b) Chứng minh rằng (M là đường trung trực của AH)
c) chứng minh rằng AMC bằng tam giác ABC
CÁC BẠN LÀM NHANH GIÚP MÌNH NHA MÌNH ĐANG CẦN GẤP BẠN NÀO LÀM NHANH NHẤT MÌNH TÍCH CHO
Cho tam giác ABC cân tại A(góc A nhọn). Vẽ AH vuông góc với BC (H thuộc BC). a. Chứng minh tam giác AHB bằng tam giác AHC b. Đường thẳng qua H song song với AB cắt AC tại D. Gọi M là trung điểm của HC. Chứng minh tam giác DHC cân và DM song song với AH.
giúp em câu b
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại E. Từ E kẻ ED vuông góc với BC tại D.
a, Chứng minh tam giác ABE= tam giác DBE.
b, Chứng minh BE là đường trung trực của đoạn thẳng AD.
c, Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh AD là tia phân giác của góc BAD
d, Gọi K là giao điểm của AH và BE. Chứng minh rằng DK song song với AC
Cho tam giác ABC vuông ở A có BE là phân giác (E thuộc AC). Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của hai đường thắng BA và HE. Chứng minh rằng :
a) BE vuông góc với KC
b) AB = BH
c) Tam giác BKC cân
d) AC + HK > AH + KC
giúp em với em sắp thi rùi @@
Bài 5: (3đ) Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC (H thuộc BC). a) Chứng minh ABH = ACH . b) Kẻ HM AB M AB ⊥ ( ) , kẻ HN AC N AC ⊥ ( ) . Chứng minh: MN // BC c) Trên tia đối của tia AB lấy E sao cho AB = AE, kẻ AD vuông góc với EC. Chứng minh AD vuông AH
Cho tam giác ABC cân tại A, M là trung điểm của BC.
a. Chứng minh rằng tam giác AMB = tam giác AMC
b. Kẻ MD vuông góc với AB (D thuộc AB) và ME vuông góc với AC (E thuộc AC).
Chứng minh rằng: MD = ME
Cho đoạn thẳng BC. Gọi M là trung điểm của BC. Trên đường trung trực của BC. Trêm đường trung trực của BC lấy điểm A( A khác M). Kẻ MH vuông góc AB( H thuộc AB), kẻ MK vuông góc AC( K thuộc AC).
a) Chứng minh MK=MH
b) CHứng minh tam giác AHK là tam giác cân
c) Chứng minh HK song song BC
Giúp mik với, Mai mik nộp r
Cho tam giác ABC vuông tại A có AB=9cm, AC:12cm a, Tính độ dài cạnh BC và so sánh các góc của tam giác ABC b, Tia phân giác của học ABC cách AC tại D. Vẽ DH vuông góc BC(H thuộc BC). Chứng minh AD=HD c, Gọi E là giao điểm của 2 đường thẳng AH và BA. Kéo dài BD cách EC tại I. CM: BI=EC