Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy D, trên tia đối của tia CBlấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD, CK vuông góc với AE. 2 đường thẳng hb và kc cắt nhau tại o.Chứng minh a, tam giác Abd=tam giác ace; b,tam giác ade cân; c,tam giác dhb= tam giác ekc;d.tam giác boc cân;e.oa là tia phân giác của góc boc
cho tam giác abc cân tại a trên tia đốicủa tia bc lấy điểm d,trên tia đối của tia cb lấy điểm e sao cho bd=ce.kẻ bh vuông góc với ad,ck vuông góc với ae[h thuộc ad,k thuộc ae].2 đường thẳng hb và kc cắt nhau tại o.CM:a,tam giác abd=tam giác ace;b,tam giác ade cân;c,tam giác dhb=tam giác ekc;d,tam giác boc cân;e,oa là tia phân giác của góc boc
Cho tam giác ABC cân tại A .Trên tia đối của tia BC lấy điểm M .Trên tia đối của tia BC lấy N.Sao cho BM=CN.Kẻ BH vuông góc với AM,CK vuông góc với AM
a) CM: Tam giác AMN cân tại A
b)CM :BH=CK và AH=AK
c)CM:HB cắt AC tại O .CM AO là tia p/g của góc BAC và AO vuông góc với BC
Cho ΔABC vuông cân tại A. Gọi M là trung điểm của B, điểm E nằm giữa M và C. Kẻ BH, CK cùng vuông góc với AE (H và K cùng thuộc đường thẳng AE ). Chứng minh rằng:
a) BH=AK b) ΔMBH=ΔMAK c) ΔMHK là tam giác vuông cân
Cho tam giác ABC cân tại A. AH vuông góc với BC(H € BC)
a) CM HB=HC
b) Trên tia đối BC lấy điểm M. Trên tia đối CB lấy điểm N sao cho BM=CN. Kẻ BH vuông góc với AM tại E, CF vuông góc với AN tại F. Gọi I là giao điểm của EB và FC. CM A, H, I thẳng hàng
Cho tam giác ABC vuông tại A biết AB= 3 cm, BC= 5 cm. Trên tia đối của tia AB lấy điểm M sao cho AB=AM
a/ Tính AC
b/ chứng minh: Tam giác ABC= tam giác AMC
c/ Kẻ AH vuông góc với BC tại H và AK vuông góc với MC tại K. Chứng minh BH=BK
d/ chứng minh HK//BM
( vẽ hình cho mik nx nha)