Câu 4 Cho tam giác ABC cân tại A (Góc A<90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H.
a) Chứng minh: BD = CE b, Chứng minh: tam giác BHC cân
b) Chứng minh: AH là đường trung trực của BC
c) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. Kẻ AM vuông góc với CK. Chứng minh E, H, K thẳng hàng
Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm, BD là tia phân giác của góc B ( D thuộc AC ). Đường thẳng kẻ từ D vuông góc với BC tại E
a) Tính AC
b) Chứng minh: Tam giác ABE cân
c) Trên tia BA lấy điểm F sao cho BF = BC. Chứng minh 3 điểm E, D, F thẳng hàng
cho tam giác abc cân tại a có góc a<90 độ. kẻ bd_|_ac( d thuộc ac ), kẻ ce_|_ab( e thuộc ab). gọi i là giao điểm của bd và ce. chứng minh rằng:
a) ad=ae
b) ai là phân giác của góc BAC
Cho tam giác ABC vuông tại A có đường cao AH. Kẻ phân giác AI của góc BAH (I thuộc BC).
a) Chứng minh tam giác AIC cân tại C.
b) Trên tia đối HA lấy D sao cho HA = HD. Chứng minh DI là phân giác của góc BDA.
c) Từ B kẻ đường thẳng vuông góc với ID cắt AD tại N. Chứng minh NI // CD.
Bài 4: Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính số đo góc IBC
Bài 4: Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính số đo góc IBC
Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC (M thuộc BC)
a) Chứng minh tam giác ABM=tam giác ACM
b) Cho biết AB=AC=13cm, AM= 12cm. Tính độ dài cạnh BC
c) Đường thằng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh tam giác DBC cân
Cho tam giác ABC vuông tại A có AB=5cm,BC=10cm. 1:tính độ dài AC. 2:Vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. Chứng minh tam giác ABC=tam giác EBD và AE vuông góc với BD. 3:Gọi giao điểm của 2 đường thẳng ED và BA là F. Chứng minh :tam giác ABC=tam giác AFC.