Cho tam giác ABC. Tìm tập các điểm M sao cho
a) MB2+MC2-MA2 =0
b) MB2+MC2- 2MA2=0
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A. Gọi M,N là điểm thỏa mãn \(\overrightarrow{MB}+2\overrightarrow{MA}=\overrightarrow{0},\overrightarrow{NC}+2\overrightarrow{NA}=\overrightarrow{0}\).Điểm E thuộc BN sao cho ME vuông góc với BC. Biết rắng góc NBC bằng 45 độ
a) Hay biểu thị \(\overrightarrow{CE}\) qua \(\overrightarrow{CA}\) và \(\overrightarrow{CB}\)
b) Cho E(3;-2) và phương trình đường thẳng CM: 2x+y-9=0. Tìm tọa độ điểm C
Trong mp Oxy cho tam giác ABC có A(-1;1) B(1;3) và trọng tâm G(-2; -2/3). Tìm M trên Oy sao cho tam giác MBC vuông tại M
cho hình chữ nhật ABCD có AB = a , BC=b , K là chân đường vuông góc hạ từ B tới đoạn AC , gọi M, N lần lượt là trung điểm của AK và CD ; tìm điều kiện của a,b để tam giác BMN vuông cân tại M
Trong mp xOy, cho hai điểm B(-1;3) C(3;1), Tìm tọa độ điểm A sao cho tam giác ABC vuông cân tại A
1. Tính độ dài phân giác trong AD của \(\Delta ABC\) theo \(a=BC;b=CA;c=AB;\alpha=\widehat{BAC}\)
2. Cho \(\Delta ABC,G\) là trọng tâm và M tùy ý.
CM: \(MA^2+MB^2+MC^2=3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\)
3. Cho \(\Delta ABC\), tìm max \(P=cosA+cosB+cosC\)
4. Cho \(\Delta ABC\), tìm min \(Q=cos2A+cos2B+cos2C\)
5. Cho \(\Delta ABC\), điểm M tùy ý. Tìm min \(F=\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}\)
6. CM: \(F=cos2A+cos2B-cos2C\le\dfrac{3}{2}\)
7. Tứ giác ABCD nội tiếp \(\left(O;R\right)\).
Tìm \(M\in\left(O;R\right)\) sao cho \(F=MA^2+MB^2+MC^2-3MD^2\) đạt min, max
trong mặt phẳng Oxy cho các điểm A(2;3), I\(\left(\dfrac{11}{2};\dfrac{7}{2}\right)\). B là điểm đối xứng với A qua I. Giả sử C là điểm có tọa độ (5;y). Tổng các giá trị của y đêt tam giác ABC vuông tại C là?
Help me 😢😢
1, Cho tam giác ABC có độ dài cạnh AC gấp 2 lần cạnh AB góc A bằng 60°. M là trung điểm của BC, điểm N nằm trên đoạn AC sao cho 5AN = 2AC . I là giao của AM và BN .Chứng minh tam giác BMI vuông.
2, Cho hình vuông ABCD, điểm M nằm trên AC sao cho 4AM = AC .Gọi N là trung điểm của BC. Chứng minh tam giác DMN vuông cân.
3,Cho tam giác ABC có góc A nhọn ,I là trung điểm CB .Vẽ phía ngoài hai tam giác ABD và ACE vuông cân tại A. Gọi F là giao điểm của AI và DE . Chứng minh rằng tam giác AFD vuông.
cho tam giácABC có trọng tâm G.tìm tập hợp điểm M thỏa mãn \(\left|\overline{MA}+\overline{MB}+\overline{MC}\right|=\left|\overline{MC}+2\overline{MB}\right|\)