Cho tam giác ABC vuông tại A có AB=3cm, AC=4cm và trung tuyến AM. Kẻ BH vuông góc với AM tại H
a) Tính Sabm b) Tính BH và MHa) Cho hai tam giác ABC và DBC. Kẻ đường cao AH của tam giác ABC. Kẻ đường cao DK của tam giác DBC. Gọi S là diện tích của tam giác ABC. Gọi S' là diện tích của tam giác DBC
Chứng minh rằng : \(\dfrac{S'}{S}=\dfrac{DK}{AH}\)
b) Cho tam giác ABC và điểm M bất kì nằm trong tam giác đó. Kẻ các đường cao của tam giác đó là AD, BE và CF. Đường thẳng đi qua điểm M và song song với AD cắt cạnh BC tại điểm H. Đường thẳng đi qua điểm M và song song với BE cắt cạnh AC tại điểm K. Đường thẳng đi qua điểm M và song song với CF cắt cạnh BA tại điểm T
Chứng minh rằng \(\dfrac{MH}{AD}+\dfrac{MK}{BE}+\dfrac{MT}{CF}=\)
1) cho tam giác ABC, trung tuyến AM
a) Chứng minh S ABM= S ACM
b) biết AB= 6 cm; BC= 10; AC=8
gọi N là trung điểm AC. tính S BMN
2) cho tam giác abc, trung tuyến am. i là trung điểm am. tia ci giao ab tại e. gọi f là trung điểm be. biết S abc= 36 m vuông. tính S BFC
3)hai trung tuyến am, bn của 1 tam giác abc giao nhau tại G
a) cmr: S abn=1,5 S abg
b) biết S abg= 105 cm vuông. tính S abc
giúp mk với thank nhiều
cho hình thang abcd (ab//cd) gọi f là giao điểm của hai chéo ac và bd a) chứng minh tam giác fcd b) chứng minh fa. fd =fb.fc c) đường thẳng f vuông góc với ab tại m và cắt cd tại n , biết fb =2cm , fd= 4cm ,fm=3cm , cd=8cm hãy tính diện tích tam giác fdc
Cho tam giác đều ABC và điểm M bất kì nằm trong tam giác đó. Đường thẳng đi qua điểm M và vuông góc với BC tại điểm H. Đường thẳng đi qua điểm M và vuông góc với CA tại điểm K. Đường thẳng đi qua điểm M và vuông góc với AB tại điểm T
Chứng minh rằng MH + MK + MT không phụ thuộc vào vị trí của điểm M
Cho ∆ABC vuông tại A, dựng đường cao AH của ∆ABC.
a) Chứng minh AB. AC = AH. BC.
b) Giả sử AB = 5cm; BC = 13cm. Tính diện tích ∆ABC; AH; BH và AC.
Cho tam giác ABC vuông tại A biết AB=6cm, AC=8cm, đường cao AH. Gọi D,E lần lượt là chân đường vuông góc kẻ từ H đến AB và AC.
a, Tính diện tích tam giác ABC.
b, Chứng minh AH=DE
c, Kẻ trung tuyến AM của tam giác ABC. Chứng minh rằng AM vuông góc với AD
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, biết AB=12cm, AC=16cm
a) Tính BC và AH
b) Chứng minh tam giác BHA đồng dạng tam giác ABC
Cho tam giác ABC vuông tại A, AB = a , AC = b , đường cao AH. Ở phía ngoài tam giác vẽ các hình vuông ABDE, ACFG, BCIK.
a) Tính diện tích tam giác DBC.
b) Chứng minh rằng AK = DC .
c) Đường thẳng AH cắt KI ở M. Tính diện tích các tứ giác BHMK, CHMI, BCIK .
Ai giúp em với chiều em học r ạ