a: MN//AB
nên góc NMB=góc ABM
=>góc NMB=góc MBC
b: Ta có: Ny//BM
nên góc CNy=góc CBM; góc MNy=góc BMN
mà góc CBM=góc BMN
nên góc CNy=góc MNy
=>Ny là phân giác của góc MNC
a: MN//AB
nên góc NMB=góc ABM
=>góc NMB=góc MBC
b: Ta có: Ny//BM
nên góc CNy=góc CBM; góc MNy=góc BMN
mà góc CBM=góc BMN
nên góc CNy=góc MNy
=>Ny là phân giác của góc MNC
Cho tam giác ABC, kẻ tia phân giác Bx của góc B, Bx cắt AC tại M. Từ M kẻ đường thẳng song song với AB, nó cắt BC tại N. Từ N kẻ tia Ny//Bx. Cmr:
a. xAB = BMN
b. Tia Ny là tia phân giác của góc MNC
Cho tam giác ABC, kẻ tia phân giác Bx của góc B, Bx cắt AC tại M. Từ M kẻ đường thẳng song song với AB, nó cắt BC tại N. Từ N kẻ tia Ny//Bx. Cmr:
a. xAB = BMN
b. Tia Ny là tia phân giác của góc MNC
giup mk nhe!
Cho tam giác ABC có góc A = 600, kẻ tia phân giác của góc B cắt AC ở D, tia phân giác góc C cắt AB ở E. Qua A kẻ đường thẳng song song với CE, đường thẳng này cắt đường thẳng BC tại E. a. Chứng minh rằng góc AFC = CAF b. Chứng minh rằng góc BDC = AEC
Cho tam giác ABC. Kẻ tia phân giác AD của Â( D thuộc BC). Từ D kẻ đường thẳng song song với AB, đường này cắt cạnh AC tại điểm E. Qua E ta kẻ đường thẳng song song với cạnh BC, đường thẳng này cắt cạnh AB tại điểm E.
a) CMinh: Góc EAD= ADE
b) Cminh: Góc ABC= DEF
Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD
Cho Tam giác ABC các tia phân giác của góc B và góc C cắt nhau tại I. Qua I kẻ đường thẳng song song AB cắt AC tại D và cắt BC tại E a) Biết góc A =50°. Tính góc BIC b) Chứng minh rằng tam giác IAD cân tại D c) Biết DE = 8cm, Be = 3cm. Tính AD
cho tam giác ABC có 3 góc nhọn. và AB<AC
kẻ BE vuông góc với Ac tại E, CF vuông góc với AB tại F, BE cắt CF tại H
kẻ HQ song song với AC, HP song song với AB ( Q thuộc AB, P thuộc AC)
a) cm: Tam giác AHQ=tam giác HAP
b) cho M là trung điểm của BC.
cm: tam giác MEF cân và góc AEF=góc ABC
c) cm: HA+HB+HC<2/3(AB+AC+BC)
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD