Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
cho △ ABC và M là 1 điểm bất kì thuộc miền trong của tam giác
a. cmr : MB+ MC< AB+AC
b. áp dụng câu a . cmr \(\dfrac{AB+AC+BC}{2}< MA+MB+MC< AB+AC+BC\)
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
b) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
c) Chứng minh MB + MC < AB + AC
d) Chứng minh MA + MB + MC < AB + BC + AC
(3.0 điểm). Cho tam giác ABC vuông tại A, có AB = 3cm, BC = 5cm. a) Tính độ dài AC ? b) Gọi M là trung điểm của AC, Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh rằng: ABM = CDM. Từ đó suy ra AB = CD. c) Chứng minh 2.BM < AB + BC.
Cho tam giác ABC. Lấy M là một điểm nằm trong tam giác
a) Chứng minh tổng 3 đoạn thẳng (MA+MB+MC) lớn hơn một nửa chu vi tam giác ABC
b)Lấy E là trung điểm đoạn MC. Vẽ EF vuông góc MC tại E. (F thuộc AC)
Chứng minh FM=FC
c)Chứng minh AC > AM
Vẽ luôn hình giúp mình
cho ΔABC, điểm M nằm tỏng tam giác. BM cắt AC tại I. Chứng minh: MA+MB+MC<AB+AC+BC
Bài 1:Cho △ABC,điểm M bất kì nằm trong tam giác
a)So sánh MB+MC với BC
b)Chứng minh 2(MA+MB+MC)>AB+BC+CA
Bài 2:Cho △ABC có AB<AC.Tia phân giác ∠A cắt BC tại D,trên cạnh AC lấy điểm E sao cho AE=AB
a)So sánh DB và DE
b,Chứng minh AC-AB>DC-DB
Cho tam giác ABC . Lấy M trong tam giác chứng tỏ :
a, MA+MB > AB
b, BA - MB < MC
c, 2 (MA+MB+MC) > AB + AC + BC
Giups mk với cần gấp