a: Xét tứ giác BDCH có
BH//CD
BD//CH
Do đó: BDCH là hình bình hành
b: \(\widehat{BDC}=180^0-60^0=120^0\)
a: Xét tứ giác BDCH có
BH//CD
BD//CH
Do đó: BDCH là hình bình hành
b: \(\widehat{BDC}=180^0-60^0=120^0\)
Cho tam giác ABC và H là trực tâm. Các đường thẳng vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D.
CMR a/ BDCH là hình bình hành
b/ góc BAC+góc BDC =900
c/H, M, D thẳng hàng ( M là trung điểm BC )
d/OM=\(\dfrac{1}{2}\)AH ( O là trung điểm AD )
Không sử dụng đường trung bình giúp em.
Cho tam giác ABC có trực tâm H. Các đường vuông góc với AB tại B, vuông góc với AC tại C cắt nhau ở D. Chứng minh BDCH là hình bình hành
Cho ∆ABC nhọn có trực tâm H . Các đường vuông góc với AB tại B, vuông góc với AC tại C cắt nhau tại D
a, cm BDCH là hình bình hành b, cm góc BAC + góc BHC = 180°
c, cm 4 điểm A,B,C,D cách đều 1 điểm
Giúp mk vs
Cảm ơn
cho tam giác abc nhọn,các đường cao BD,CE cắt nhau tại H.Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhai tại K
a) c/m AH vuông góc BC
b) c/m tứ giác BHCK là hình bình hành
Cho tam giác ABC có 3 góc nhọn. Gọi AM và CN là các đường cao của tam giác. H là giao của 2 đường cao đó. Từ B,C kẻ các đường thẳng vuông góc với AB và AC hai đường thẳng này cắt nhau tại D. cm: tứ giác DBHC là hình bình hành
giúp mình với !
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N
a, Chứng minh tứ giác amhn là hình chữ nhật
b, lấy điểm K sao cho n là trung điểm của HK Chứng minh tứ giác amnk là hình bình hành
Cho hình bình hành ABCD,hai đường chéo AC,BD cắt nhau tại O.Kẻ BH vuông góc AC tại H,cắt DC tại N và kẻ DK vuông góc AC tại K cắt AB tại M.CMR:
a,Tứ giác BMDN là hình bình hành ;
b,Tứ giác BKDH là hình bình hành;
c,AC,BD,MN đồng quy
Cho tam giác ABC có AB<AC, M là trung điểm BC, N là trung điểm đối xứng của A qua D.
a) Chứng minh rằng tứ giác ABNC là hình bình hành
b) Kẻ AH vuông góc với BC. Gọi E, F lần lượt là trung điểm AB, AC. Chứng minh rằng ME=HF suy ra MHEF là hình thang cân.