cho tam giác ABC vuông cân tại A. qua A kẻ đường thẳng D sao cho BvàC cùng thuộc nửa mặt phẳng bờ là đường thẳng D. gọi I là trung điểm của BC. gọi H,M,K lần lượt là hình chiếu của B,I,C lên đường thẳng C
a, C/m tam giác BHA=tam giác AKC
b,C/m tam giác HIA=tam giác KIC
c, Đường thẳng D ở vị trí nào để diện tích tứ giác BCKH lớn nhất
cho tam giác abc cân tại a kẻ ah vuông góc với bc a) chứng minh AH là phân giác của góc BAC b)gọi i, k là hình chiếu của H lên AB, AC. Chứng minh AI=AK c) gọi M là trung điểm của IK chứng minh 3 điểm A, M, H thẳng hàng
cho tam giác abc cân tại a kẻ ah vuông góc với bc a) chứng minh AH là phân giác của góc BAC b)gọi i, k là hình chiếu của H lên AB, AC. Chứng minh AI=AK c) gọi M là trung điểm của IK chứng minh 3 điểm A, M, H thẳng hàng
cho tam giác ABC cân tại A , điểm D thuộc tia đói của CB . So sánh AD và AB bằng cách xét hai hình chiếu
Cho △ABC cân tại A , trên các cạnh AB, AC lần lượt lấy M,N sao cho AM =AN. Gọi H ,K lần lượt là các hình chiếu của các điểm M,N trên BC. Chứng ming:
a) BH=CK
b)BN > (BC+MN):2
Cho tam giác ABC có AB khác AC. Lấy điểm M sao cho M nằm giữa B và C. Gọi E, F lần lượt là hình chiếu của B và C xuống AM. So sánh BE+CF với BC.
Vẽ hình:
Bài 1: Cho tam giác ABC, AB < AC, H là hình chiếu của A trên BC. Lấy điểm D bất kì thuộc AH
Bài 2: Cho tam giác ABC nhọn, điểm D nằm giữa B và C sao cho AD không vuông góc với BC. Gọi H,K lần lượt là hình chiếu của B và C trên AD
Cho tam giác ABC cân tại A. Trên AB và AC lấy 2 điểm M và N sao cho AM = AN
a) CMR: MN//BC
b) Gọi H và K là hình chiếu của M và N trên BC. CMR: BH = CK và MH< CK
1. Cho △ABC. M là một điểm thuộc cạnh BC. Gọi E, F lần lượt là hình chiếu của B và C trên AM. Chứng minh rằng BE + CF < BC
2. Cho △ABC nhọn. Vẽ AD ⊥ BC, BE ⊥ AC, CF ⊥ AB.
a) Chứng minh AB + AC > 2AD
b) Chứng minh AB + AC + BC > AD + BE + CF
3. Cho △ABC vuông tại A, kẻ AH ⊥ BC. Chứng minh rằng BC + AH > AB + AC.
4. Cho △ABC không tù. Kẻ AH ⊥ BC, BK ⊥ AC. Biết AH ≥ BC, BK ≥ AC. Tính số đo các góc của △ABC
5. Cho △ABC cân tại A. Trên AB lấy D, trên tia đối của CA lấy E sao cho BD = CE. Chứng minh rằng BC < DE