a2 + b2 + c2-ab-bc-ca = 0, hãy chứng minh rằng a = b = c.
\(Cho tam giác ABC vuông cân tại A. Trên AB lấy M. Kẻ BD vuông góc với CM, BD cắt CA tại E.Chứng minh rằng: a. EB.ED = EA.EC b. BD . BE CA. CE = BC2 c. Góc ADE = 45o\)
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CE cắt nhau tại H. Qua B kẻ đường thẳng vuông góc với Ab tại B, qua C kẻ đường thẳng vuông góc với AC tại C, chúng cắt nhau tại K. Gọi M là trung điểm của BC
a) Chứng minh: H, M, K thẳng hàng
b) Tam giác ABC thỏa mãn điều kiện gì để tứ giác BHCK là hình thoi
c) Gọi O là trung điểm của AK, CH giao với MA tại G. Chứng minh: G là trọng tâm của tam giác ABC
Cho a+b+c=0 ; \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=0. Chứng minh rằng: a2+b2+c2=1
Bạn nào làm hộ mình với mai mình phải nộp r
Cho tam giác abc vuông tại a, AB<AC. Trên bc lấy D,E sao cho BD=BA, CE=CA . Gọi AE cắt đường thẳng qua B vuông góc với BC tại K. Gọi AD cắt đường thẳng qua C vuông góc với BC tại L. BL cắt CK tại I .CM: AI chia đôi DE
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
Cho tam giác ABC vuông tại A, đường cao AH, vẽ HM vuông góc với AM, HN vuông góc với AC.
a) CHứng minh: AM.AB=AN.NC
b) Biết AH=2cm, BC=5cm. Tính diện tích tứ giác AMHN
Cho a ,b,c là độ dài 3 cạnh tam giác.
A. Chứng minh Rằng :ab+bc+ca <hoặc =a^2+b^2+c^2 <2(ab+bc+ca)
B.Chứng minh rằng nếu (a+b+c)^2=3 (ab+bc+ca) thì tam giác đó là tam giác đều