hai tia phân giác trong tại đỉnh B và C của tam giác ABC cắt nhau tại O, biết góc BOC=130 độ
a) tính góc A
b)hai tia phân giác ngoài tại đỉnh B và C của tam giác ABC cắt nhau tại P. chứng minh A, O, P thẳng hàng
c) tam giác ABC là tam giác gì để OP là phân giác của góc BOC
Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc xOy .Qua D thuộc tia Oz kẻ đường thẳng vuông góc với tia Oz cắt tia Ox ,Oy tại A,B
Chứng minh:
a, tam giác AOD= tam giác BOD và D là trung điểm của AB
B, Qua D kẻ đường thẳng vuông góc với tia Ox tại M cắt tia Oy tại F .Qua D kẻ đường thẳng vuông góc với tia Oy tại M cắt Ox tại E
Chứng minh:
+ DB là tia phân giác của góc NDE
+ MN//AB
Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC tại M . Kẻ MD vuông góc với BC (D thuộc BC).
a. Chứng minh BA=BD.
b. Gọi điểm E là giao của hai đường thẳng DM và BA. Chứng minh : tam giác ABC = tam giác DBE.
c. Kẻ DH vuông góc với MC tại H và AK vuông góc với ME tại K . Gọi N là giao của hai tia DH và AK . Chứng minh : MN là tia phân giác của góc HMK.
d.Chứng minh: Ba điểm B,M,N thẳng hàng.
ChoΔ ABC có góc B=2 gócC. Trên tia đối của tia CB. Lấy 1 điểm D sao cho góc CDA= góc CAD. Gọi AX là tia đối của tia AC
a, chứng minh góc BAx = góc CAD
b, Cho góc A =30độ. Tính góc B và góc CAD
Cho 2 góc AOB và BOC kề nhau.Om là tia phân giác của AOB.On là tia phân giác của BOC và Om vuông góc với On.biết AOB=30 độ
a)Chứng tỏ 3 điểm A,O,C thẳng hàng
b)Tính BOC
1. Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D. Trên tia đối của BC lấy E sao cho BD=BE. các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CM:
a, DM=ED
b, Đường thằng BC cắt Mn tại I là trung điểm của MN
2. Cho tam giác ABC có góc B và góc c nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE (trong đó góc ABD và góc ACE đều bằng 90 độ), vẽ DI và EK cùng vuông góc với đường thẳng BC. CM:
a, BI=CK; EK=HC
b, BC=DI+EK
3. Cho M, N lần lượt là trung điểm của các cạnh AB và AC của tam giác ABC. Các đường phân giác và phân giác ngoài của tam giác kẻ từ B cắt đường thẳng MN lần lượt tại D và E các tia AD và AE cắt đường thẳng BCtheo thứ tự tại P và Q. CM:
a, BD\(\perp\)AP và BE\(\perp\) AQ
b, B là trung điểm của BQ
c, AB=DE
Cho tam giác ABC có góc B = góc C. Trên tia đôí tia CB lấy D : góc CDA = góc CAD. Gọi Ax là tia đối tia ADa) Chứng minh góc BAx = 3CADb) cho góc B = 42 độ . Tính góc A , góc CAD
ve hinh ho minh bai nay:Cho tam giác ABC cân ở A có AB = AC = 10cm, BC = 12cm. Kẻ AH là phân giác của góc BAC (H thuộc BC)
a) Chứng minh H là trung điểm của BC và AH vuông góc BC
b) Tính AH và diện tích tam giác ABC
c) Kẻ HM vuông góc AB, HN vuông góc AC, BQ vuông góc MN. Chứng minh tam giác HQM là tam giác cân
ChoΔ ABC có góc B = góc C. Gọi Am là tia phân giác của góc ngoài đỉnh C. Hãy chứng tỏ Am //BC