\(\widehat{BAH}+\widehat{ABC}=90^0\)
\(\widehat{CAD}+\widehat{CDA}=90^0\)
mà \(\widehat{ABC}=\widehat{CDA}\)
nên \(\widehat{BAH}=\widehat{CAD}\)
\(\widehat{BAH}+\widehat{ABC}=90^0\)
\(\widehat{CAD}+\widehat{CDA}=90^0\)
mà \(\widehat{ABC}=\widehat{CDA}\)
nên \(\widehat{BAH}=\widehat{CAD}\)
Cho tam giác nhọn ABC nội tiếp trong đường tròn (O), AB < AC. Kẻ đường cao AH của tam giác. H thuộc BC và đường kính AD của đường tròn (O).
1. Chứng minh rằng tam giác BAH đồng dạng tam giác DAC.
2. Kẻ BK vuông góc AD, K thuộc AD. Chứng minh rằng tứ giác ABHK nội tiếp.
3. Chứng minh rằng đường thẳng HK vuông góc AC.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O),đường cao AH.Kẻ đường kính AM.
a.Tính góc ACM.
b.Chứng minh góc BAH = góc OA
Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AD của tam giác ABC và đường kính AK của (O). Gọi F là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác ADFC là tứ giác nội tiếp. 2) Chứng minh DF || BK. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi E là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh góc MDF= góc MFD và M là tâm đường tròn ngoại tiếp của tam giác DEF.
Câu 8(3 điểm): Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O; R). Vẽ đường cao
AH của tam giác ABC và đường kính AD của (O).
a) Chứng minh hệ thức: AB.AC =AH. AD.
b) Vẽ BE và CF lần lượt vuông góc với AD (E và F thuộc AD ). Chứng minh rằng HE vuông góc AC và HF vuông góc AB.
c) Gọi M là trung điểm BC. Chứng minh rằng M là tâm đường tròn ngoại tiếp tam giác EHF.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O),đường cao AH.Kẻ đường kính AM.
a.Tính góc ACM.
b.Chứng minh góc BAH = góc OA
c.Gọi N là giao điểm của AH với đường tròn (O).Tứ giác BCMN là hình gì?Vì sao?
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O),đường cao AH.Kẻ đường kính AM.
a.Tính góc ACM.
b.Chứng minh góc BAH = góc OA
c.Gọi N là giao điểm của AH với đường tròn (O).Tứ giác BCMN là hình gì?Vì sao?
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O),đường cao AH.Kẻ đường kính AM.
a.Tính góc ACM.
b.Chứng minh góc BAH = góc OA
c.Gọi N là giao điểm của AH với đường tròn (O).Tứ giác BCMN là hình gì?Vì sao?
cho tam giác ABC nội tiếp đường tròn , kẻ đường cao AH của tam giác và đường kính AD của đường tròn . Chứng ,minh rằng \(\widehat{BAH}=\widehat{DAC}\)
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn O. Hai đường cao AD, BE cắt nhau tại H. Chứng minh tứ giác ABDE nội tiếp đường tròn
Cho tam giác ABC có 3 gó nhọn , nội tiếp đường tròn O . Hai đường cao AD,BE cắt nhau tại H
a, chứng minh tứ giác ABDE nội tiếp đường tròn
b, Tia AO cắt đương tròn O tại K . Chứng minh tứ giác BHCK là hình bình hành