Cho tam giác ABC nội tiếp (O). Gọi P, Q , R theo thứ tự là các điểm chính giữa của các cung bị chắn BC , CA , AB bởi các góc A , B, C
a) Chứng minh : AP QR
b) AP cắt CR tại I. Chứng minh tam giác CPI là tam giác cân
c) Chứng minh PQ là đường trung trực của IC
d) Gọi M là giao điểm của PQ và AC. Chứng minh : IM // BC
Cho tam giác ABC nội tiếp đường tròn. P, Q, R theo thứ tự là các điểm chính giữa của các cung bị chắn BC, CA, AB bởi các góc A, B, C.
a) Chứng minh \(AP\perp QR.\)
b) AP cắt CR tại I. Chứng minh tam giác CPI là tam giác cân.
Cho đường tròn (O) và hai dây AB, AC. Gọi M, N lần lượt là điểm chính giữa của cung AB và AC. Đường thẳng MN cắt dây AB tại E và cắt dây AC tại H. Chứng minh tam giác AEH là tam giác cân.
Tam giác ABC nội tiếp trong đường tròn (O) . Các điểm M,N,P lần lượt là điểm chính giữa cung AB , cung BC , cung CA . Gọi D là giao điểm của MN và AB ; E là giao điểm của PN và AC . Gọi I là tâm đường tròn nội tiếp tam giác ABC
a) Chứng minh PI = PC ; NI = NC
b) Chứng minh rằng DE//BC
Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N là điểm chính giữa cung AB, cung BC; AN cắt CM tại I. Chứng minh:
a) Tam giác BNI cân
b) Gọi NM cắt AB tại K. Chứng minh IK // BC
cho tam giác ABC nhọn,nội tiếp tâm O bán kính R. Biết rằng góc BOC=90 độ. Vẽ đường tròn tâm I đường kính BC cắt AB,AC tại M và N. Chứng minh rằng MN=R
Cho đường tròn (O;AB). Lấy điểm C sao cho số đo cung AC=111 độ. Từ một điểm D trên OA kẻ đường thẳng vuông góc với AB cắt tiếp tuyến tại C ở điểm E, cắt AC tại I và cắt đường tròn (O) tại M và N.
a) Tính số đo góc ABC
b) Chứng minh tam giác IEC cân.
Cho tam giác ABC nội tiếp trong đường tròn ( O ) . AD là tia phân giác của góc A ( D thuộc BC) . Gọi E là giao điểm của AD với đường tròn ( O)
a) Tiếp truyến của đường tròn tại A cắt BC ở I . Chứng minh rằng tam giác IAD là tam giác cân
b) Kẻ đường kính EOF . Gọi M là giao điểm của FA với BC . Chứng minh rằng M đối xứng với D qua I
cho o r từ s nằm ngoài đường tròn tâm o kẻ các tiếp tuyến sa và sa' cát tuyến sbc với (o) phân giác góc bac cắt bc tại d cắt (o) tại e gọi h là giao điểm của os và aa' g,f là giao điểm oe và aa' với bc chứng minh sa=sd,sa2=sf.sg