\(\Delta\)HAB vuông tại H có HD là đc
\(\Rightarrow AH^2=AD\times AB\left(htl\right)\left(1\right)\)
\(\Delta\)HAC vuông tại H có HE là đc
\(\Rightarrow AH^2=AE\times AC\left(htl\right)\left(2\right)\)
(1) và (2) => đpcm
\(\Delta\)HAB vuông tại H có HD là đc
\(\Rightarrow AH^2=AD\times AB\left(htl\right)\left(1\right)\)
\(\Delta\)HAC vuông tại H có HE là đc
\(\Rightarrow AH^2=AE\times AC\left(htl\right)\left(2\right)\)
(1) và (2) => đpcm
Cho tam giác ABC vuông tại A và có đường cao AH
a) Khi AH = 12cm ; AB = 15cm . Tính AC, BC và số đo
BAH( làm tròn đến độ )
b) Gọi D ; E lần lượt là hình chiếu của H trên AB ; AC .
Chứng minh : HB.HC = AE.AC=AD.AB
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho tam giác ABC vuông tại A, có đường cao AH. Vẽ HE vuông góc AB tại E ; vẽ HF vuông góc AC tại F. Chứng minh: (AE.AB)/(EF.BC) = AF/AB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 2cm, BC= 6cm
a)Tính AH và BCA
b)Chứng minh AD.AB=AK.AC và ADK=ACB
cho tam giác abc vuông tại a đường cao ah kẻ hd vuông góc ab he vuông góc ac a, chứng minh adhe là hình chữ nhật b, chứng minh da.db+ea.ec=hb.hc
Cho tam giác ABC vuông tại A, có đường cao AH. Vẽ HE vuông góc AB tại E ; vẽ HF vuông góc AC tại F.
Chứng minh: AE.AB=AF.AC
Chứng minh: HB/HC = (AB/AC)2
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Lấy điểm D trên cạnh AC và E trên tia AH và ngoài đoạn thẳng AH sao cho AD/AC = HE/HA = 1/3 . Chứng minh rằng tam giác BED là tam giác vuông.
Cho tam giác ABC vuông tại A, đường cao AH. Hạ HD, HE tương ứng vuông góc với AB, AC. Cho BH=4, HC=9
a, Tính DE và chứng minh AD.AB=AE.AC
b, Các đường vuông góc với DE tại D và E cắt BC tương ứng tại M, N. Chứng minh rằng M là trung điểm BH, N là trung điểm CH.
c, Tính diện tích tứ giác DENM.
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB tại E, HF vuông góc với AC tại F
a) Chứng minh: AE.EB=HE2
b) Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B