Cho tam giác ABC cân tại A có góc A bé hơn 90 độ có các đường cao AD và BE cắt nhau tại H. Gọi O là trung điểm của AB
a,Chứng minh ba điểm A,E,H cùng thuộc một đường tròn và Chứng minh tứ giác ABCD nội tiếp
b, DE là tiếp tuyến của đường tròn tâm O
c, Chứng minh tam giác CDE đồng dạng tam giác CAB
Bài 4: Cho tam giác cân ABC (AB = AC), các đường cao AD, BE, cắt nhau tại H. Gọi O là tâm đường tròn ngoại tiếp tam giác AHE. Chứng minh:
Giải giúp mình câu c và d nhé!
a/ tứ giác CEHD nội tiếp . b/Bốn điểm A, E, D, B cùng nằm trên một đường tròn.
c/ tam giác cân EBD cân. d/ DE là tiếp tuyến của đường tròn (O).
cho tam giác abc có 3 góc nhọn, vẽ đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. BE và CD cắt nhau tại H
a)Chứng minh IO vuông góc DE
b)AH kéo dài cắt BC ở F. CMR: H là tâm đường tròn nội tiếp ΔDFE
Cho đường tròn(O;R) và điểm M thuộc đường tròn(O) . Đường trung trực của đoạn thẳng OM cắt đường tròn (O) tại A và B và cắt OM tại H.
a) Chứng minh H là trung điểm của AB và tam giác OMA đều.
b) Chứng minh tứ giác OAMB là hình thoi.
c) Tiếp tuyến tại A của (O) cắt tia OM tại C.Chứng minh CB=CA.
d) Đường thẳng vuông góc với OA tại O cắt BC tại N. Chứng minh MN là tiếp tuyến của đường tròn (O).
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
ho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NB, PC cắt nhau tại H.
a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I
Cho tam giác ABC vuông tại A, AB=18cm, BC=30cm. Kẻ đường cao AH, vẽ đường tròn tâm A bán kính AH. Từ B và C vẽ các tiếp tuyến BE và CF với đường tròn tâm A ( E, F là các tiếp điểm).
a) Chứng minh ba điểm E, A ,F thẳng hàng
b) Chứng minh EF là tiếp tuyến của đường tròn đường kính BC
Cho tam giác nhọn ABC nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H (D thuộc AC. E thuộc AB) 1. CM các tứ giác ADHE và BCDE nội tiếp được trong một đường tròn 2. Tia BD và tia CE lần lượt cắt đường tròn O tại M và N. Cm DE song song MN 3. Kẻ đường kính AK. Cm tứ giác BKCM là hình thang cân
Cho tam giác MAB vuông tại M ( MB<MA), kẻ MH vuông góc với AB( H thuộc AB). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F( E,F khác M). a) Chứng minh tứ giác AEFB nội tiếp b) Đường thẳng EF cắt đường tròn tâm (I) ngoại tiếp tam giác MAB tại P và Q(P thuộc cung MB). Chứng minh tam giác MPQ cân c) Gọi D là giao điểm thứ 2 của (O) với (I). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M,D,K thẳng hàng