Bài 10: Cho tam giác ABC, các đường cao BD và CE cắt nhau tại H
Chứng minh rằng :
a) ADB ~ AEC; AED ~ ACB.
b) HE.HC = HD. HB
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H. Chứng minh BF.BA+ CE.CA= BC^2?
Bài 1 : Cho tam giác ABC vuông tại A có AB < AC . Tia phân giác của ABC) của cạnh AC tại D kẻ DE .!. BC ( E € BC ) a, Tính độ dài AB nếu cho AC = 12cm ; BC = 15cm b, chứng minh ∆ ADB = ∆EDB , từ đó suy ra DB là tia phân giác của ADE) c, Vẽ EF // BD ( F thuộc DC ) . Chứng minh BDE) = MED và tam giác DEF cân d, chứng minh BD là đường trung trực của AE
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
c) Tam giác ABC cần thêm điều kiện gì thì tứ giác AEHF là hình vuông?
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
Gọi M là trung điểm của BC. Từ M kẻ MP vuông gốc vs AI.MQ vuông góc vs AC. Lấy G đx vs M qua AB. K đx vs M qua AC . Chứng Minh AGBM, AMCK là hình thoi
Cho tam giác ABC cân tại A , đường cao AH . Gọi O là trung điểm của Ah , BO cắt Ac tại N , CO cắt AB tại M . Chứng minh :
SAMON=\(\dfrac{1}{6}\)SABC
Cho tam giác ABC cân tại A có đường cao AD . Lấy điểm H thuộc đoạn
thẳng AD , gọi K là điểm đối xứng với điểm H qua điểm D
1) Tứ giác BHCK là hình gì? Vì sao?
2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M . Chứng minh rằng: KM =HC .
3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N . Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC = 8cm ; BH = 5 cm .
4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P . Chứng minh tỉ số HP
PC không đổi khi điểm H di chuyển trên đường cao AD .
Cho tam giác nhọn ABC kẻ đường cao BD và CE cắt nhau tại H. Gọi M là trung điểm của BC, trên tia đối MH lấy điểm K sao cho MK=MH.
a) Chứng minh góc EBH= góc DCH
b) Chứng minh tứ giác BHCK là hình bình hành
c) Tìm điều kiện của tam giác ABC để tứ giác BHCK là hình thoi
Cho tam giác ABC vuông ở A và có BC = 2 AB = 2a. Ở phía ngoài tam giác, ta vẽ hình vuông BCDE, tam giác đều ABF và tam giác đều ACG
a) Tính các góc B, C cạnh AC và diện tích tam giác ABC
b) Chứng minh rằng FA vuông góc với BE và CG. Tính diện tích các tam giác FAG và FBE
c) Tính diện tích tứ giác DEFG