Đây là định lý hàm cos!
- Kẻ đường cao AH xuống BC
⇒CH=AC.cosC
Áp dụng định lí Pitago ta có:
AB2=AH2+BH2=AC2−CH2+(BC−CH)2
=AC2−CH2+BC2−2BC.CH+CH2
=AC2+BC2−2BC.CH
=AC2+BC2−2AC.BC.cosC (Điều phải chứng minh)
Đây là định lý hàm cos!
- Kẻ đường cao AH xuống BC
⇒CH=AC.cosC
Áp dụng định lí Pitago ta có:
AB2=AH2+BH2=AC2−CH2+(BC−CH)2
=AC2−CH2+BC2−2BC.CH+CH2
=AC2+BC2−2BC.CH
=AC2+BC2−2AC.BC.cosC (Điều phải chứng minh)
Cho tam giác ABC vuông tại A đường cao AH. Gọi EF theo thứ tự là hình chiếu của H trên AB AC
A) Chứng minh \(BC=AB\cdot sinC+AC\cdot cosC\)
B) Chứng mình \(AF\cdot AC^2=EF\cdot BC\cdot AE\)
C)Chứng minh\(AH^3=BC\cdot BE\cdot CF=BC\cdot AE\cdot AF\)
Cho tam giác ABC nhọn. Chứng minh rằng: AC2 = AB2 + BC2 - 2AB.BC.cosB
Cho tam giác ABC nhọn có đường cao AH. Chứng minh rằng :
\(AB^2-AC^2=BH^2-CH^2\)
Cho tam giác ABC có 3 góc nhọn và AH là đường cao
a) Chứng minh AB^2+CH^2=AC^2+BH^
b) Vẽ trung tuyến AM của tam giác ABC, chứng minh:
1. AB^2+AC^2=BC^2/2 +2AM^2
2. AC^2-AB^2=2BC.HM( với AC>AB)
Cho tam giác nhọn ABC chứng minh: \(BC^2=AB^2+AC^2-2AB.AC.c\text{os}A\)
Cho tam giác ABC nhọn, AB=c BC=a AC=b.
Chứng minh: a2 = b2 +c2 - 2bc cos A
Cho tam giác ABC có ba góc đều nhọn và ba cạnh BC; AC; AB lần lượt có độ dài a;b;c. Chứng minh rằng b^2 = a^2 + c^2 - 2ac.cos\(\widehat{ABC}\).
Bài 1. Giải tam giác vuông ABC, biết: BC = 10cm, góc C = 55 độ.
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 5cm, AC = 12cm.
a) Tính AH.
b) Gọi M, N là hình chiếu của H trên AB, AC. Chứng minh rằng: MN2 = AM.AB.
c) Gọi K là điểm đối xứng của H qua AC. Tính diện tích tứ giác AHCK.
Cho tam giác ABC có Â=120°, BC=a,AC=b,AB=c, chứng minh rằng A^2=B^2+C^2+AB