cho tam giác abc, các đường cao bd, ce cắt nhau tại h. đường vuông góc với ab tại b và đường vuông góc ac tại c cắt nhau ở k. gọi m là trung điểm của bc
a, cm tam giác adb đồng dạng tam giác aec
b, cm he.hc=hd.hb
c, cm h, k, m, thẳng hàng
d, tam giác abc phải có điều kiện gì thì tam giác bhck là hình thoi? hình chữ nhật?
Cho tam giác ABC có đường cao BD và CE cắt nhau tại H. Đường vuông góc với Ab tại B và đường vuông góc với Ác tại C cắt nhau ở K. a, Tứ giác BHCK là hình gì? b, Gọi M là trung điểm của BC , I là trung điểm của AK.Chứng mình : IM=1/2 AH
1,Cho tam giác ABC nhọn với H là trực tâm. Gọi M là trung điểm của BC. Các đường trung trực của AC và BC cắt nhau tại O. Chứng minh: AH = 2OM
2, Cho hình thang ABCD có đáy lớn là CD. Qua A kẻ đường thẳng AK song song BC ( K thuộc CD ). Qua điểm B kẻ đường thẳng BI song song AD ( I thuộc CD ). BI cắt AC tại F; AK cắt BD tại E. Chứng minh rằng:
a, EF song song AB
b, AB2 = CD.EF
Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Đường thẳng vuông góc với HM tại H cắt AB, AC theo thứ tự tại P và Q. a. Chứng minh tam giác AQH đồng dạng tam giác BHM. b. Chứng minh PH/MH=AH/CM. c. Chứng minh: H là trung điểm của PQ
Cho tam giác nhọn ABC , BD và CE là hai đường cao cắt nhau tại H .
a, Chứng minh : Tam giác HED đồng dạng với tam giác HBC .
b, Gọi M là trung điểm của cạnh BC . Và P , Q lần lượt là hình chiếu của B , C trên đường thẳng ED .
Chứng minh : PE và QD .
c, Gọi N là điểm trên tia đối của tia HA . Đường thẳng qua N vuông góc với MH cắt AB , AC lần lượt tại I , K .
Chứng minh rằng : N là trung điểm của IK .
Cho tam giác nhọn ABC , BD và CE là hai đường cao cắt nhau tại H .
a, Chứng minh : Tam giác HED đồng dạng với tam giác HBC .
b, Gọi M là trung điểm của cạnh BC . Và P , Q lần lượt là hình chiếu của B , C trên đường thẳng ED .
Chứng minh : PE và QD .
c, Gọi N là điểm trên tia đối của tia HA . Đường thẳng qua N vuông góc với MH cắt AB , AC lần lượt tại I , K .
Chứng minh rằng : N là trung điểm của IK .
Cho tam giác ABC nhọn. H là trung tâm tam giác, M là trung điểm BC, đường thẳng qua H vuông góc HM,cắt AB tại I ,cắt AC tại K .Từ C kẻ đường thẳng song song IK, cắt AH tại N cắt AB tại P. a, Chứng minh MN vuông góc HC b,Chứng minh NC =ND c,chứng minh HI = HK
Cho tam giác ABC nhọn Kẻ BD vuông AC tại D, CE vuông AB tại E,BD cắt CE tại H
Kẻ HF vuông BC ,CM. A H F thẳng hàng
Gọi M là trung điểm BC ,I là trung điểm ED. Chứng minh MI là đg cao của tam giác EDM