@Mysterious Person zz
@đề bài khó wá zz
@Sky SơnTùng zz
@Mysterious Person zz
@đề bài khó wá zz
đề lủng củng quá
cái gì là giao điểm AN và BC
@Mysterious Person zz
@đề bài khó wá zz
@Sky SơnTùng zz
@Mysterious Person zz
@đề bài khó wá zz
đề lủng củng quá
cái gì là giao điểm AN và BC
Cho ∆ABC ngoại tiếp đường tròn(O), Q là trung điểm của BC.Vẽ đường kính IN của đường tròn(O).Tiếp tuyến đường tròn(O) tại N cắt AB;AC theo thứ tự D;E.Gọi K là giao điểm của AN và BC.Chứng minh rằng:
a, DN.BI = EN.CI
b,BI=CK
Cho đường tròn tâm O có hai đường kính là AB và CD vuông góc với nhau tại O. Trên cung nhỏ BC lấy điểm M, AM cắt CD tại I. Tiếp tuyến của O tại M cắt tia AB tại N. Chứng minh rằng: AC là tiếp tuyến của đường tròn ngoại tiếp tam giác CMI.
Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a. Chứng minh AH ⊥ BC
b. Gọi E là trung điểm của AH. Chứng minh ME là tiếp tuyến của đường tròn (O).
c. Chứng minh MN.OE = 2ME.MO
d. Giả sử AH = BC. Tính tan(BAC)
Cho tam giác ABC nhọn. Đường tròn (O;R), đường kính BC cắt AB,AC lần lượt ở M và N. BN cắt CM tại D
a) Chứng minh tứ giác AMDN nội tiếp
b) Chứng minh góc MAD = OMC
c) Gọi I là tâm đường tròn ngoại tiếp tứ giác AMDN. Chứng minh MI là tiếp tuyến của (O;R)
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2
1. Cho đường tròn
(O;3cm) và điểm A thỏa mãn OA=5cm. Kẻ các tiếp tuyến AB,AC với đường tròn. Gọi H là giao điểm của AO với BC.
a) Tính OH.
b) Qua điểm M bất kỳ thuộc cung nhỏ BC kẻ tiếp tuyến với (O) cắt AB,AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.
Cho tam giác ABC nội tiếp đường tròn (O). I là trung điểm , M là điểm nằm trên đoạn CI ( M khác C và I , đường thẳng AM cắt đường tròn (O) tại điểm D. Tiếp tuyến của đường tròn ngoại tiếp tam giác AMI tại M cắt đường thẳng BD, CD lần lượt tại P và Q. Chứng minh rằng DM.AI = MP.IC và tính tỉ số \(\dfrac{MP}{MQ}\) .
Bài 1: cho đường tròn (O;R) có dấy BC cố định. Một điểm A di động trên cung lớn BC. Gọi I là giao điểm 3 đường phân giác trong của tam giác ABC. Các tia AI,BI,CI cắt (O) lần lượt tại điểm thứ hai D,E,F. DE,DF cắt AB,AC theo thứ tự tại M,N. Chứng minh 3 điểm M,I,N thẳng hàng
Bài 2: Cho tam giác ABC nội tiếp đường tròn (O). Tiếp tuyến tại B và C với (O) cắt nhau tại M, đường thẳng AM cắt (O) tại N. Gọi P,Q lần lượt là giao điểm của đường thẳng vuông góc với NC tại C với (O) và BN. AP cắt BC tại E. MO cắt PQ ở D. Chứng minh1) tứ giác AMBD nội tiếp2) Ba điểm M,Q,E thẳng hàng
Cho ∆ABC nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt AB, AC tại M và N. Gọi H là giao điểm của BN và CM.
a) Chứng minh AH ^ BC tại D.
b) Gọi S là trung điểm AH. Chứng minh SN là tiếp tuyến của đường tròn (O).
c) Chứng minh OM là tiếp tuyến của đường tròn ngoại tiếp ∆AMN.