Cho tam giác ABC các điểm M,N lần lượt thuộc cạnh AB,AC sao cho AB=3AM, 3AC=4AN. Gọi I là giao điểm CM và BN
Tìm k,h thuộc R sao cho vt IA=k.vtIB +h.vtIC
ĐỀ BÀI:
CÂU 1: cho tam giác ABC. a) tìm điểm I thỏa mãn \(\overrightarrow{IA}+\overrightarrow{2IB}+\overrightarrow{3IC}=\overrightarrow{0}\)
b) tìm tập hợp điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{2MB}+\overrightarrow{3MC}\right|=6\)
c) tìm điểm N trên đường thẳng AC sao cho \(\left|\overrightarrow{NA}+\overrightarrow{2NB}+\overrightarrow{3NC}\right|\) là nhỏ nhất
CÂU 2: cho lục giác đều ABCDEF tâm O. các vecto đối của vecto \(\overrightarrow{OD}\) là những vecto nào?
CÂU 3: giải phương trình sau:
a) \(\sqrt{2x+2}-\sqrt{2x-1}=x\)
b) \(\left(x-3\right)\sqrt{x^2+m}=x^2-9\) (m là tham số)
c) \(\frac{x^2-4}{\sqrt{x^2-m}+1}=0\) (m là tham số)
d) \(\sqrt{x+3}-\sqrt{7-x}=\sqrt{2x-8}\)
e) \(\sqrt{x+1}+\sqrt{1-x}=2-\frac{x^2}{4}\)
Cho tam giác ABC. P là điểm đối xúng với B qua C, Q và R là hai điểm xác định bởi \(\overrightarrow{AQ}=\dfrac{1}{2}\overrightarrow{AC}\),\(\overrightarrow{AR=\dfrac{1}{3}}\overrightarrow{AB}\)
a/ Biểu diễn \(\overrightarrow{RB},\overrightarrow{RQ}\) theo vecto \(\overrightarrow{AB,}\overrightarrow{AC}\)
b/ Chứng minh P, Q, R thẳng hàng
Bài 1: Cho tam giác ABC có 3 góc nhọn. Kẻ đường cao BD, CE của tam giác. Gọi F, K lần lượt là hình chiếu của E, D trên BC. M là trung điểm của BC. a, CMR: tam giác MED cân
b, CMR: AE*AB=AD*AC
c, CMR: \(\dfrac{BE}{CK}=\left(\dfrac{BE}{DC}\right)^3\)
Bài 5: Cho tam giác ABC vuông tại A (AB<AC). Từ trung điểm của 1 cạnh AC kẻ đường vuông góc với BC tại D. CMR: BD^2-CD=AB
Mk thấy đề này có j sai sai? Sửa lại rồi làm cho mk nha! ^-^"
1, Câu nào sau đây không phải là mệnh đề
A. 3+2=7 B. \(^{x^2}\)+1<0 C. 2-\(\sqrt{5}\) <0 D. 4+x=3
2, Mệnh đề "∃x ∈ R, \(^{x^2}\)=3" khẳng định rằng:
a. Bình phương của mỗi số thực bằng 3
B. Có ít nhất 1 số thực có bình phương bằng 3
C. Chỉ có 1 số thực có bình phương bằng 3
D. Nếu x là số thực thì \(x^2\)=3
3, Mệnh đề nào sau đây là mệnh đề đúng?
A. {a;b}⊂(a;b) B. {a}⊂[a;b] C. a∉[a;b) D.a∈(a;b]
4. Biết \(\sqrt{8}\)≃ 2,828427125. Giá trị gần đúng của \(\sqrt{8}\) chính xác đến hàng phần trăm là:
A. 2,829 B. 2,828 C. 2.82 D. 2,83
5, Cho mệnh đề A: "∀x ∈ R, \(x^2\)-x+7<0". Mệnh đề phủ định của A là:
A. ∀x ϵ R, \(x^2\)-x+7>0 B. ∀x ∈ R, \(x^2\)-x+7≥0
C. ∃x∈ R, \(x^2\)-x+7>0 D. ∃x ∈R, \(x^2\)-x+7≥0
6, Với giá trị nào của k thì hàm số y=(k-1)x+k-2 nghịch biến trên tập xác định của nó?
A. k<1 B. k>1 C. k<2 D. k>2
7, Cho △ABC đều, cạnh a. Mệnh đề nào sau đây đúng?
A. \(\overrightarrow{AB}=\overrightarrow{BC}=\overrightarrow{CA}\) B. \(\overrightarrow{CA}=-\overrightarrow{AB}\)
C. \(\left|\overrightarrow{AB}\right|=\left|\overrightarrow{BC}\right|=\left|\overrightarrow{CA}\right|=a\) D. \(\overrightarrow{CA}=-\overrightarrow{BC}\)
8, Trong hệ trục (O; \(\overrightarrow{i},\overrightarrow{j}\)), tọa độ của \(\overrightarrow{i}+\overrightarrow{j}\) là:
A. (0;1) B. (-1;1) C. (1;0) D. (1;1)
9, Tập xác định của hàm số \(y=\sqrt{2-x}+\sqrt{7+x}\) là:
A. (-7;2) B. [2;\(+\infty\)) C. [-7;2] D. R \ { -7;2}
10, Cho A(2;1), B(0;-3), C(3;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành là:
A. (5;5) B. (5;-2) C. (5;-4) D. (-1;-4)
11, Cho hàm số f(x) đồng biến trên khoảng (a;b), hàm số g(x) nghịch biến trên khoảng (a;b). Có thể kết luận gì về chiều biến thiên của hàm số y=f(x)-g(x) trên khoảng (a;b)?
A. Đồng biến B. Nghịch biến C. Không đổi D. Không kết luận được
12, Cho △ABC và một điểm M thỏa mãn điều kiện \(\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\). Trong các mệnh đề sau mệnh đề nào là mệnh đề sai?
A. MABC là hình bình hành B. \(\overrightarrow{AM}+\overrightarrow{AB}=\overrightarrow{AC}\) C. \(\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BM}\) D. \(\overrightarrow{MA}=\overrightarrow{BC}\)
13, a) Viết tập hợp C gồm các nghiệm của phương trình \(x^2\)-5x+6=0 bằng cách chỉ ra các tính chất đặc trưng của nó. Liệt kê các phần tử của C.
b) Cho hai tập hợp A=(-1;3). B[1;4). Tìm A\(\cup\)B, A\(\cap\)B.
14, Cho hàm số \(y=mx^2+x-3\) (1)
a) Tìm các giá trị của m để đồ thị hàm số (1) là một Parabol
b) Tìm m để đồ thị hàm số (1) là một Parabol nhận đường thẳng d: x=1 làm trục đối xứng
15, a) Giả hệ phương trình \(\left\{{}\begin{matrix}2x+3y=5\\3x+2y=5\end{matrix}\right.\)
b) Giải phương trình \(\sqrt{x^2+3}=x+1\)
16, Cho hình bình hành ABCD
a) Chứng minh rằng \(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AC}\)
b) Xác định điểm M để \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\)
17, Cho △ABC thỏa mãn \(2AB^2-3AC^2-5\overrightarrow{AB}.\overrightarrow{AC}=0.\) Các điểm M, N được xác định bởi \(\overrightarrow{MC}=-2\overrightarrow{MB}\), \(\overrightarrow{NB}=-2\overrightarrow{NA.}\) Chứng minh: AM vuông góc CN
Giúp mình giải thích bài này chi tiết với (~_~)
ABCD là hình vuông . Tìm M , xác định .
a, \(\overrightarrow{AM}=\overrightarrow{4AC}\)
\(b,\overrightarrow{AM}=\overrightarrow{-2BC}\)
\(c,\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{2AC}\)
\(d,\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{-4AB}\)
\(e,\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)
\(f,\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right|=O\)
\(g,\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\overrightarrow{3AC}\)
\(h,\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MD}\right|=O\)
Cho tam giác ABC cân tại A có AB=1 và BAC=120o .Gọi M là điểm thuộc cạnh AC sao cho AM=2MC.Xác định điểm N trên cạnh BC sao cho AN vuông góc BM
Bài 1:Cho ΔABC vuông tại A (AB < AC).Gọi M là điểm thuộc cạnh huyền BC.Kẻ MI vuông góc với AB tại I,MK vuông góc với AC tại K
a,C/m AM=IK
b,Gọi H là điểm đối xứng với điểm A qua K. C/m tứ giác IMHK là hbh
c,Gọi O là giao điểm của AM và IK;E là giao điểm của MK và IH.C/m:OE//AC
Bài 2:C/m rằng:Nếu a,b,c là độ dài 3 cạnh của ΔABC thỏa mãn đk:a^2+b^2+c^2=ab+ac+bc thì Δ ABC là Δ đều
Cho tam giác ABC trung tuyến AM,I là trung điểm AM,K thuộc AC sao cho CK=2AK
a)Phân tích vecto BI theo vecto AB,AC
b)Phân tích vecto BK theo vecto AB,AC
c)Chứng minh: 3 điểm B,I,K thẳng hàng