1. Cho tam giác ABC có trọng tâm G M là trung điểm BC I là điểm đối xứng với B qua G . Phân tích vectơ MI theo vectơ AB và vectơ AC
2. Cho▲ABC M là trung điểm của BC sao cho MB=2MC . CMR: vecto AM=1/3 vecto AB +2/3 vecto AC
Cho tam giác ABC có trung tuyến AD . Gọi M là trung điểm của AD , trên AC lấy N sao cho \(\overrightarrow{AC}\) = 3\(\overrightarrow{AN}\). Chứng minh B,M,N thẳng hàng
Cho tam giác ABC có trung tuyến AM, gọi I là trung điểm AM, J đối xứng với I qua M và K là điểm trên cạnh AC sao cho \(\overrightarrow{AK}=\frac{1}{4}\overrightarrow{AC}\), biểu diễn \(\overrightarrow{JK}=m\overrightarrow{AB}+n\overrightarrow{AC}\), giá trị m = ...
1, Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng với G qua . B.
a, Chứng minh: vecto AD = 5/3 vecto AB - 1/3 vecto AC
b, AD cắt BC tại E. Tính BE/BC
2 Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng với B qua G.
a, Chứng minh vecto AD = -(1/3) vecto AB + 2/3 vecto AC.
b, AD cắt BC tại E. Tính BE/BC.
GIÚP VỚI Ạ ! MÌNH CẦN GẤP Ạ!
Cho tam giác ABC, I là trung điểm BC , P là điểm đối xứng với A qua B. R là điểm trên AC sao cho \(AR=\dfrac{2}{5}AC\), G là trọng tâm tam giác ABI. CMR: P, R, G thẳng hàng, G là trọng tâm tam giác ABI
Cho tam giác ABC có trung tuyến AD. Gọi M là trung điểm của AD , lấy N sao cho \(\overrightarrow{AC}\)= 3 \(\overrightarrow{AN}\) . Chứng minh B,N,M thẳng hàng
Cho tam giác ABC và hai điểm M,N nằm trên các cạnh AC,AB sao cho MN song song với BC. Điểm P di chuyển trên đoạn thẳng MN. Lấy các điểm E,F sao cho \(EP\perp AC,EC\perp BC,EP\perp AB,FB\perp BC\)
a) Chứng minh rằng đường thẳng EF đi qua một điểm cố định khi P di chuyển
b) Đường thẳng qua A vuông góc với EF cắt BC tại Q. CHứng minh BC đi qua trung điểm PQ