△ABC có MN // AB
\(\Rightarrow\dfrac{MN}{AB}=\dfrac{MC}{CB}=\dfrac{CN}{CA}=\dfrac{MN+MC+CN}{AB+BC+AC}=\dfrac{2}{3}\)
Nên chu vi △MNC = 2/3 chu vi △ABC = \(\dfrac{2}{3}\cdot90=60\left(cm\right)\)
Vậy chu vi △MNC là 60cm
△ABC có MN // AB
\(\Rightarrow\dfrac{MN}{AB}=\dfrac{MC}{CB}=\dfrac{CN}{CA}=\dfrac{MN+MC+CN}{AB+BC+AC}=\dfrac{2}{3}\)
Nên chu vi △MNC = 2/3 chu vi △ABC = \(\dfrac{2}{3}\cdot90=60\left(cm\right)\)
Vậy chu vi △MNC là 60cm
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)
Bài 3 :Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt 2 cạnh AB và AC theo thứ tự tại M và N; đường thẳng qua N và song song với AB, cắt BC tại D. Cho biết AM = 6, AN = 8, BM = 4.
a) Tính độ dài MN, NC và BC
b) Tính diện tích hình bình hành BMND
Cho tam giác vuông ABC (A=90o). Một đường thảng song song với cạnh BC căt hai cạnh AB và AC theo thứ tự tại M và N, đường thẳng đi qua N và song song với AB cắt BC tại D. Cho biết AM=6cm;An=8cm;BM=4cm.
a)Tính độ dài các đoạn thẳng Mn,NC và BC
b)Tính diện tích hình bình hành BMND
Cho tam giác ABC vuông tại A , H là một điểm tùy ý trên cạnh AB.Qua điểm H , kẻ đường thẳng d vuông góc BC tại M và cắt AC kéo dài tại O.
a) CMR: tam giác ABC đồng dạng tam giác MOC
b) CMR: BH.BA=BM.BC
c) Cho AB=8cm,AC=6cm.Diện tích tam giác BOC=250cm2. Tính diện tích tam giác ACM
d,Tia CH cắt OB tại k.CMR CK vuông góc OB
Cho tam giác ABC gọi M là điểm cố định trên BC. Trên AB và AC lấy E và F. Tìm vị trí của E và F để chu vi tam giác MEF nhỏ nhất
Cho tam giác ABC vuông ở C có AC=9cm, AB=15cm. Từ trung điểm M của AB kẻ đường thẳng vuông góc với AB, cắt BC và AC lần lượt ở P và Q.
a) CM : tam giác ABC đồng dạng với tam giác AQM; từ đó suy ra AB mũ 2 =2.AC.AQ
b) Tính PQ.
c) tia AP cắt BQ tại N. CM : CN song song với AB.
d) tính diện tích ABNC.
Cho tam giác ABC, điểm M thuộc cạnh BC sao cho MB/MC=1/2.
Đường thẳng đi qua M và song song với AC cắt AB ở D. Đường thẳng đi qua M và song song với AB cắt AC ở E. Biết chu vi tam giác ABC bằng 24cm, tính chu vi của các tam giác DBM và EMC.
PHẢI VẼ HÌNH
Cho tam giác ABC (AB < AC). Tia phân giác của góc A cắt BC ở K. Qua trung điểm M của BC kẻ một tia song song với KA cắt đường thẳng AB ở D, cắt AC ở E. Chứng minh BD = CE ?