cho tam giác ABC nt đtron kẻ đcao AH kẻ BE vuông góc với AO kẻ HE cắt AC tại K
a) chứng minh HE vuông góc AC
b) gọi M là trugn điểm BC chứng minh tam giác HME cân tại M giúp mình câu b
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
Bài 5 : (3 điểm ) Cho tam giác ABC vuông tại A có AC = 12 cm và BC = 13 cm Đường cao AH b/Kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . Chứng minh : HB.HC=DA.DB+EA.EC
Cho nửa đường tròn kính BC. Trên nửa đường tròn lấy điểm A. Kẻ AH vuông góc với BC (H thuộc BC). Trên cung BC lấy điểm D, BD cắt AH tại I
a) Chứng minh: Tứ giác IHCD nội tiếp
b) Chứng minh: \(AB^2=BI.BD\)
c) Tâm đường tròn ngoại tiếp tam giác AID luôn nằm trên 1 đường cố định khi D thay đổi trên cung AC
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
cho tam giác ABC vuông tại A đường cao AH chia cạnh huyền thành 2 đoạn BH = 4 cm, HC = 6 cm. gọi M là trung điểm của AC.
a, Tính , AH, AD, AC. Tính số đo góc AMB.
b, kẻ AH\(\perp\)BM K thuộc BM chứng minh tam giác BKC\(\sim\) tam giác BHM
1. Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A;AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D,E là tiếp điểm khác điểm H.)
a) Chứng minh 3 điểm D,A,E thẳng hàng.
b) DE là tiếp tuyến của đường tròn đường kính BC.
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy