cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC
Cho tam giác ABC vuông tại A (AB < AC) . M là trung điểm cạnh BC. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Chứng minh E là trung điểm của đoạn thẳng AC và tứ giác CMDE là hình bình hành.
c) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác MHDE là hình thang cân
d) Qua A vẽ đường thẳng song song với DH cắt DE tại K. Chứng minh HK vuông góc với AC.
2) Cho tam giác ABC vuông tại A (AB < AC). D là điểm trên cạnh AC, các điểm M, N, E lần lượt là trung điểm của các đoạn thẳng BD, BC, CD.
a) Chứng minh rằng DMNE là hình bình hành.
b) Chứng minh rằng AENM là hình thang cân.
c) Xác định vị trí của điểm D để DMNE là hình thoi.
chào pạn bên kia màn hình dễ thương bạn có thể giúp mik bài tập này ko ạ,mik đang cần gấp :<<<
Bài 1 : Cho tam giác ABC có ba góc nhọn , kẻ hai đường cao BD và CE . Gọi M , N lần lượt là hình chiếu của B,C trên đường thẳng DE
1.Tứ giác BMNC là hình gì?Vì sao
2.Gọi O là trung điểm của đoạn thẳng BC. CMR tam giác DOE là tam giác cân
3.Gọi P là trung điểm của đoạn thẳng DE . CMR \(OP=\dfrac{BM+CN}{2}\)
Bài 2 : Tìm số nguyên tố p để \(p^3+p^2+11p+2\) là số nguyên tố
Cho tam giác ABC có đường cao AD, BE cắt nhau tại trực tâm H. Gọi I trung điểm AH, K trung điểm BC.
a) Chứng minh KE _|_ IE
b) Cho AH = 6; BC =8. Tính IK
Cho hình thang ABCD vuông có A=D=90 độ. Hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại I. Chứng minh
a, tam giác ABD đồng dạng với tam giác DAC. Suy ra AD2=AB. DC
b, Gọi E là hình chiếu vuông góc của B lên cạnh DC và O là trung điểm của BD. Chứng minh điểm A,O,E thẳng hàng
c, Tính tỉ số diện tích hai tam giác AIB và DIC
Cho ΔABC vuông tại C (AC < BC). Vẽ tia phân giác Ax của cắt cạnh BC tại I. Qua B vẽ đường thẳng vuông góc với tia Ax và cắt tia Ax tại H.
a. Chứng minh: ΔAIC đồng dạng với ΔBHI.
b. Cho AC = 15cm, AB = 25cm. Tính độ dài các cạnh CB, CI?
c. Chứng minh: HB2 = HI.HA.
d. Gọi K là trung điểm của cạnh A
B.Qua I vẽ đường thẳng vuông góc với IK và cắt hai cạnh AC và BH lần lượt tại M và N. Chứng minh: I là trung điểm của MN.
Cho hình thang ABCD vuông có A=D=90 độ. Hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại I. Chứng minh
a, tam giác ABD đồng dạng với tam giác DAC. Suy ra AD2=AB. DC
b, Gọi E là hình chiếu vuông góc của B lên cạnh DC và O là trung điểm của BD. Chứng minh điểm A,O,E thẳng hàng
c, Tính tỉ số diện tích hai tam giác AIB và DIC