a) Chứng minh :
Vẽ tia đối AM của MD sao cho AM = MD
Nối D với C
Xét △ABM và △DCM có:
BM = MC ( gt )
\(\widehat{M1}=\widehat{M2}\text{ ( đối đỉnh )}\)
AM = MD ( gt )
⇒ △ABM = △DCM ( c.g.c)
⇒ AB = DC ( tương ứng )
⇒ \(\widehat{A1}=\widehat{D1}\text{ ( tương ứng )}\)
Mà \(\widehat{A1}\text{ và }\widehat{D1}\) là hai góc so le trong
⇒ AB // CD ( dấu hiệu nhận biết )
Vì \(\widehat{A}=90^o\) ⇒ AC ⊥AB
mà AB // CD ( cmt )
⇒ AC ⊥ DC ( tính vuông góc đến song song )
⇒ \(\widehat{DCA}=90^o\)
Xét △ABC và △CDA có:
AC - cạnh chung
\(\widehat{BAC}=\widehat{DAC}=90^o\)
AB = CD ( cmt )
⇒ △ABC = △CDA ( c.g.c )
⇒ BC = DA ( tương ứng )
Mà MD = AM = 1/2 AD
⇒ AM = 1/2 BC
b) Chứng minh:
Lấy D ∈ AM sao cho AM = MD ( D ≠ A )
Nối D với C
Xét △ ABM và △DCM có:
BM = MC ( gt )
\(\widehat{M1}=\widehat{M2}\text{ ( đối đỉnh )}\)
AM =MD ( cách vẽ )
⇒ △ABM = △DCM ( c.g.c )
⇒ AB = DC ( tương ứng )
Vì AM = 1/2 BC ( gt )
Vì AM = MD ⇒ AM = 1/2 AD ( cách vẽ )
⇒ BC = AD
Vì △ABM = △DCM ( cmt )
⇒ \(\widehat{B1}=\widehat{C1}\text{ ( tương ứng )}\)
mà \(\widehat{B1}\text{ và }\widehat{C1}\) ở vị trí so le trong
⇒BA // DC ( dấu hiệu nhận biết )
⇒ \(\widehat{BAC}+\widehat{DCA}=180^o\text{ ( hai góc trong cùng phía )}\)
Xét △ABC và △CDA có :
AB = DC ( cmt )
AC - cạnh chung
AD = BC ( cmt )
⇒ △ABC = △CDA ( c.c.c )
⇒ \(\widehat{BAC}=\widehat{DCA}\text{ ( tương ứng )}\)
Mà \(\widehat{BAC}+\widehat{DCA}=180^o\text{ ( cmt)}\)
⇒ \(\widehat{BAC}=\widehat{DCA}\text{ }=90^o\)