a: Xét ΔABM và ΔDCM có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
mà góc BAC=90 độ
nen ABDC là hình chữ nhật
Suy ra: AC vuông góc với DC
a: Xét ΔABM và ΔDCM có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
mà góc BAC=90 độ
nen ABDC là hình chữ nhật
Suy ra: AC vuông góc với DC
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .
Bài 1:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Tính số đo của góc ABD
b) Chứng minh: tam giác ABC= tam giác BAD
c) So sánh độ dài AM và BC
Bài 2: Cho tam giác ABC có BM và CN là hai đường trung tuyến cắt nhau tại G. Trên tia đối của tia MB lấy điểm E sao cho ME = MG. Trên tia đối của tia NC lấy điểm F sao cho NF = NG.
a) Chứng minh: EF = BC
b) Chứng minh: tam giác FAE= tam giác BGC
Bài 3: Cho tam giác ABC cân tại A, có AB = AC = 10cm; BC = 8cm. Gọi G là trọng tâm của tam giác ABC. Tính AG, BG, CG.
cho tam giác ABC có góc A là góc vuông. Trên tia đối tia AB lấy điểm D sao cho AB = AD. Trên tia đối tia AC lấy điếm E sao cho AC = AE. Lấy điểm I là trung điểm của DC. Chứng minh BE = 2AI
Cho tam giác ABC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a chứng minh tam giác amb bằng tam giác amc và AB song song CD B Chứng minh tam giác ABC bằng tam giác BM B và AC song song BD C Gọi M là trung điểm của AC và am cắt BM tại g chứng minh C gần đi qua trung điểm của ABd bn cắt cm tại k và h là trung điểm của cd c /m 3 điểm A ,H,K THẲNG hàng e gọi I là trung điểm của ab di cắt bm tại f c/m m là trung điểm của fk
14 tháng 6 2020 lúc 16:48
Cho tam giác ABC vuông tại A có AB= 12cm; BC= 20cm. BM là đường trung tuyến. Trên tia đối của tia MB lấy điểm D sao cho MD = MB
a) Tính AC
b) CM: AB = CD; AC vuông góc với CD
c) CM: góc ABM > góc CBM
Bài 3. (3,0 điểm) Cho tam giác ABC có ba góc nhọn. Các điểm M, N, P lần lượt là trung điểm của cạnh BC, AB, AC. Gọi O là giao điểm các đường trung trực của tam giác ABC. Trên tia đối của tia MO lấy điểm D sao cho MO = MD. Trên tia đối của tia NO lấy điểm F sao cho NO = NF. Trên tia đối của tia PO lấy điểm E sao cho PO = PF.
a) Chứng minh ∆ANO = ∆BNF, từ đó suy ra AO = BF và AO // BF.
b) Chứng minh hình lục giác AFBDCE có 6 cạnh bằng nhau và 2 trong 6 cạnh đó đôi một song song.
Cho tam giác ABC( AB> AC ), M là trung điểm của BC. AD là phân giác góc BAC ( D thuộc BC). Trên tia đối MA lấy E sao cho MA= ME
a) BE= AC
b) Góc AEB > góc BAE
c) AB + CD> AC +BD
Cho tam giác ABC vuông tại A có góc ACB= 30° trên cạnh BC lấy điểm D sao cho BA=BD tia phân giác của góc B cắt AC tại I 1, chứng minh tam giác BAD đều 2, chứng minh tam giác IBC cân 3, chứng minh D là trung điểm của BC 4, cho AB=6cm tính BC, AC 5, trên tia đối của tia ID lấy diểm E sao cho IE=IC chứng minhED=AC 6, tam giác ACE là tam giác gì ? Vì sao?