Cho tam giác ABC ( góc BAC < 90 độ ) đường cao AH . gọi E,H lần lượt là điểm đối xứng của H qua AB , AC. Đường thẳng E,H cắt AB,AC lần lượt tại Mvaf N. CMR:
a) AE = AF
b) HA là phân giác của góc MHN
c) CM//EH, BN // FH
Cho tam giác ABC nhọn (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2. góc BME +góc B = góc ACB
c) BE=CF
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của BC. Qua B vẽ đường thẳng song song với AH. Đường thẳng này cắt đường thẳng AC tại D.
a, C/m: Góc ABH = góc ACH
b, C/m : Góc CBD = 90 độ
c, Từ A vẽ AE vuông góc với BD ( E thuộc BD ) C/m : EB = ED
1. Cho tam giác ABC nhọn, kẻ đường cao AH. Dựng các điểm D và E sao cho AB là trung trực của DH, AC là trung trực EH. DE cắt AC tại I và DE cắt AB tại K.
a. CM tam giác ADE cân
b. CM HA là phân goác của góc KHI.
c. CM AH, BI, CK đồng quy
2. Cho tứ gíc ABCD gọi A'B'C'D' lần lượt là trọng tâm của các tam gíc BCD, tam gíc ACD, tam giác ABD, tgiac ABC. Gọi E, F lần lượt là trung điểm của AC và BD.
a. CM AA' đi qua trung điểm EF
b. CM 4 đường thẳng AA', BB', CC', DD' đồng quy
1. Cho tam giác ABC nhọn, kẻ đường cao AH. Dựng các điểm D và E sao cho AB là trung trực của DH, AC là trung trực EH. DE cắt AC tại I và DE cắt AB tại K.
a. CM tam giác ADE cân
b. CM HA là phân goác của góc KHI.
c. CM AH, BI, CK đồng quy
2. Cho tứ gíc ABCD gọi A'B'C'D' lần lượt là trọng tâm của các tam gíc BCD, tam gíc ACD, tam giác ABD, tgiac ABC. Gọi E, F lần lượt là trung điểm của AC và BD.
a. CM AA' đi qua trung điểm EF
b. CM 4 đường thẳng AA', BB', CC', DD' đồng quy
Cho tam giác ABC vuông tại A ( AB < AC), M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Kẻ đường cao AH, trên tia AH lấy điểm E sao cho H là trung điểm của AE. Chứng minh:
a. CD// AB
b. CD= BE
c. CD vuông góc vs BD
d. ED// BC
e. M là tâm của đường tròn đi qua 5 điểm A; B;C;D;E
Cho tam giác ABC cân tại A. Trên cạnh BC lấy 1 điểm D( BD < DC) .Trên tia đối của tia CB lấy điểm E sao cho BD= CE. Qua D và E kẻ các đường vuông góc với BC cắt AB và AC lần lượt tại M và N.
a) Chứng minh: DM= EN
b) Gọi I là giao điểm của MN với BC. Chứng minh: I là trung điểm của MN
c) Qua I kẻ đường vuông góc với MN cắt phân giác của góc BAC tại O.
Chứng minh: tma giác ABO= ACO
d) Chứng minh: OC vuông góc với AN
cho tam giác nhọn ABC , vẽ đườn thẳng xy đi qua A và song song với BC. từ B vẽ BD vuông góc vơi AC ở D, BD cắt xy tại E. trên tia BC lấy điểm F sao cho BF=AE
a. chứng minh EF=AB và EF//AB
b. Từ E vẽ FK vuông góc với BE ở K. chứng minh FK=AD
c. gọi I là trung điểm cuả KD. chứng minh 3 ddiemr A,I,F thẳng hàng
d. Gọi M là trung điểm của đoạn thẳng AB, Mi cắt EF tại N. Chứng minh N là trung điểm của EF
Cho tam giác ABC vuông tại A có B=600. Vẽ AH vuông góc vs BC tại H
a) Tính số đo góc HAB
b) Trên cạnh AC lấy điểm D sao cho AD=AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI và tam giác ADI
c) Tia AI cắt cạnh HC tại điểm K. Chứng minh tam giác AHK = tam giác ADK từ đó suy ra AB// KD
d) Trên tia đối của tia HA lấy điểm E sao cho HE=AH. Chứng minh H là trung điểm của BK và 3 điểm D,K,E thẳng hàng